Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; (4): 577-85, 2006 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-16402144

RESUMO

A series of carboxyethylphosphonate hybrid materials has been prepared: Mn(II)(O3PCH2CH2COOH) *H2O (1), Mn(III)(OH)(O3PCH2CH2COOH)*H2O (2), Al3(III)(OH)3(O3PCH2CH2CO2)2 *3H2O (3) and Cr2(III)(OH)3(O3PCH2CH2CO2) *3H2O (4). Compounds 1 and 2 were synthesized from Mn(III)(CH3COO)3 *2H2O under hydrothermal, or refluxing treatments, respectively. The crystal structures of the manganese-bearing solids have been solved ab initio from laboratory X-ray powder diffraction data and refined by the Rietveld method. 1 crystallises in a orthorhombic cell and 2 in monoclinic symmetry. Both solids have inorganic 2D layered structures with the acid carboxylic groups pointing towards the interlayer space, and the layers linked only through hydrogen bonds. The inorganic layers of these compounds are formed by manganese atoms in distorted octahedral environments linked together by the phosphonate groups. The crystal structure of 3 has been solved ab initio from synchrotron X-ray powder diffraction data. This solid shows a pillared structure with the phosphonate and carboxylate groups cross-linking the inorganic layers. These layers contain chains of aluminium octahedra running parallel to each other. 4 is amorphous and the IR-UV-VIS spectra suggest a framework with Cr(III) cations in octahedral environments. Thermal, spectroscopic and magnetic data for manganese and chromium compounds as well as the structural details of these solids are discussed.

2.
Inorg Chem ; 43(17): 5283-93, 2004 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-15310206

RESUMO

Commercial bis-(4-bromophenyl)-ether, [BrC(6)H(4)](2)-O, has been used to prepare 4-[4'-(diethoxyphosphoryl)phenoxy]phenyl-phosphonic acid diethyl ester, [(CH(3)CH(2))(2)O(3)P-C(6)H(4)](2)-O, (I) following a slight modification of the Michaelis-Arbuzov reaction. The acid hydrolysis of I gave 4-(4'-phosphonophenoxy)phenyl phosphonic acid, [H(2)O(3)P-C(6)H(4)](2)-O (II), and both compounds have been characterized by (1)H NMR and (13)C NMR. The crystal structure of II has been determined by single-crystal X-ray diffraction. II crystallizes in an orthorhombic unit cell, space group Pbcn, with a = 7.822(3) A, b = 5.821(2) A, c = 28.982(9) A, and V = 1319.7(7) A(3). The final R factor was R1 = 0.0614. The structure is layered, being held together through a hydrogen bonding network. II has been used as precursor in the syntheses of new metal (Mn, Fe, Co, Ni, Cu, and Zn) bisphosphonates. The syntheses were carried out using a fixed metal/bisphosphonic acid molar ratio of 2.1:1 and the influence of the pH in the reactions has been studied. Nine new compounds have been isolated: Mn(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3)).1.5H(2)O (III), Mn(5)(OH)(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3))(2).2H(2)O (IV), Fe(HO(3)PC(6)H(4)OC(6)H(4)PO(3)).0.5H(2)O (V), Co(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3)).2H(2)O (VI), Ni(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3)).3H(2)O (VII), Ni(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3)).2H(2)O (VIII), Cu(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3)) (IX), Zn(2)(O(3)PC(6)H(4)OC(6)H(4)PO(3)) (X), and Zn(HO(3)PC(6)H(4)OC(6)H(4)PO(3)H) (XI). Compound IX crystallizes in an orthorhombic unit cell, space group Pbcn, and unit cell parameters a = 8.1012(5) A, b = 5.3109(3) A, c = 29.2595(5) A, and V = 1258.8(1) A(3). Its structure has been solved by ab initio powder diffraction and refined by the Rietveld method to R(F) = 0.042. IX has a pillared layer framework with highly distorted CuO(5) groups sharing edges to give isolated dimers. XI was indexed in a monoclinic unit cell, space group P112(1), with parameters a = 9.4991(9) A, b = 5.0445(5) A, c = 29.131(2) A, gamma = 91.945(7) degrees, and V = 1395.1(3) A(3). Its structure has been refined by the Rietveld method, R(F) = 0.054, since it is isostructural with the known compound, Zn[HO(3)P(C(6)H(4))(2)PO(3)H]. All solids were also characterized by thermal analysis and IR and UV-Vis spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA