Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO Rep ; 21(8): e48920, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32496651

RESUMO

The CDC7 kinase is essential for the activation of DNA replication origins and has been implicated in the replication stress response. Using a highly specific chemical inhibitor and a chemical genetic approach, we now show that CDC7 activity is required to coordinate multiple MRE11-dependent processes occurring at replication forks, independently from its role in origin firing. CDC7 localizes at replication forks and, similarly to MRE11, mediates active slowing of fork progression upon mild topoisomerase inhibition. Both proteins are also retained on stalled forks, where they promote fork processing and restart. Moreover, MRE11 phosphorylation and localization at replication factories are progressively lost upon CDC7 inhibition. Finally, CDC7 activity at reversed forks is required for their pathological MRE11-dependent degradation in BRCA2-deficient cells. Thus, upon replication interference CDC7 is a key regulator of fork progression, processing and integrity. These results highlight a dual role for CDC7 in replication, modulating both initiation and elongation steps of DNA synthesis, and identify a key intervention point for anticancer therapies exploiting replication interference.


Assuntos
Quebra Cromossômica , Replicação do DNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação/genética
2.
Cytokine ; 144: 155552, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34000478

RESUMO

The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-ß) and type II interferon (IFN-É£) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1. We investigated whether the STAT1 NTD-mediated dimerization affected the IFN-induced tyrosine phosphorylation of STAT1, its nuclear translocation, STAT1-dependent gene expression, and IFN-dependent antiviral defense. We reconstituted human STAT1-negative and STAT2-negative fibrosarcoma cells with STAT1, NTD-mutated STAT1 (STAT1AA), STAT1 with a mutated DNA-binding domain (DBD), or STAT2. We treated these cells with IFN-α and IFN-É£ to assess differences between IFN-α-induced STAT1 homo- and heterodimers and IFN-É£-induced STAT1 homodimers. Our data demonstrate that IFNs induce the phosphorylation of STAT1 and STAT1AA at Y701 and their nuclear accumulation. We further reveal that STAT1AA can be phosphorylated in response to IFN-α in the absence of STAT2 and that IFN-É£-induced STAT1AA can activate gene expression directly. However, STAT1AA largely fails to bind STAT2 and to activate IFN-α-induced expression of endogenous antiviral STAT1/STAT2 target proteins. Congruent herewith, both an intact STAT1 NTD and STAT2 are indispensable to establish an antiviral state with IFN-α. These data provide new insights into the biological importance of the STAT1 NTD.


Assuntos
Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Antivirais/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Transporte Proteico/fisiologia , Fator de Transcrição STAT2/metabolismo
3.
Carcinogenesis ; 36(8): 817-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998848

RESUMO

Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Ácido Tióctico/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cisteína/metabolismo , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/genética , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Células HCT116/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Temozolomida , Ácido Tióctico/análogos & derivados , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Arch Toxicol ; 89(10): 1829-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25526924

RESUMO

Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU). We show that LA induces a dose-dependent decrease in cell viability, which was independent of the p53 status as attested in isogenic p53-proficient and p53-deficient cell lines. This effect was largely attributable to cell death induction as revealed by Annexin-V/PI staining. LA-treated HCT116 cells underwent caspase-dependent and caspase-independent cell death, which was blocked by the pan-caspase inhibitor zVAD and the RIP-kinase inhibitor Necrostatin-1, respectively. In CaCO-2 and HT29 cells, LA induced caspase-dependent cell demise via activation of caspase-9, caspase-3 and caspase-7 with subsequent PARP-1 cleavage as demonstrated by immunoblot analysis, activity assays and pan-caspase inhibition. Interestingly, LA treatment did neither activate p53 nor induced genotoxic effects as shown by lack of DNA strand breaks and phosphorylation of histone 2AX. Finally, we provide evidence that LA increases the cytotoxic effect induced by the anticancer drug 5-FU as revealed by significantly enhanced cell death rates in HCT116 and CaCO-2 cells. Collectively, these findings demonstrate that LA induces CRC cell death independent of their p53 status and potentiates the cytotoxicity of 5-FU without causing DNA damage on its own, which makes it a candidate for tumor therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/farmacologia , Ácido Tióctico/farmacologia , Antimetabólitos Antineoplásicos/administração & dosagem , Células CACO-2 , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fluoruracila/administração & dosagem , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/metabolismo
5.
FEBS J ; 291(14): 3147-3168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555567

RESUMO

Drugs that block DNA replication prevent cell proliferation, which may result in anticancer activity. The latter is dependent on the drug's mode of action as well as on cell type-dependent responses to treatment. The inhibition of Cell division cycle 7-related protein kinase (CDC7), a key regulator of DNA replication, decreases the efficiency of origin firing and hampers the restarting of paused replication forks. Here, we show that upon prolonged CDC7 inhibition, breast-derived MCF10A cells progressively withdraw from the cell cycle and enter a reversible senescent-like state. This is characterised by the rewiring of the transcriptional programme with the induction of cytokine and chemokine expression and correlates with the accumulation of Cyclic GMP-AMP synthase (cGAS)-positive micronuclei. Importantly, cell fate depends on Cellular tumour antigen p53 (p53) function as cells no longer enter senescence but are funnelled into apoptosis upon p53 knockout. This work uncovers key features of the secondary response to CDC7 inhibitors, which could aid the development of these compounds as anticancer drugs.


Assuntos
Proteínas de Ciclo Celular , Senescência Celular , Células Epiteliais , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Senescência Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico
6.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865090

RESUMO

CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly. Using genome editing technology, we generated isogenic cell lines deficient in either DBF4 or DRF1: these cells are viable but present signs of genomic instability, indicating that both can independently support CDC7 for bulk DNA replication. Nonetheless, DBF4-deficient cells show altered replication efficiency, partial deficiency in MCM helicase phosphorylation, and alterations in the replication timing of discrete genomic regions. Notably, we find that CDC7 function at replication forks is entirely dependent on DBF4 and not on DRF1. Thus, DBF4 is the primary regulator of CDC7 activity, mediating most of its functions in unperturbed DNA replication and upon replication interference.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas Serina-Treonina Quinases , Replicação do DNA/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fosforilação , Instabilidade Genômica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA
7.
iScience ; 26(6): 106951, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378325

RESUMO

CDC7 kinase is crucial for DNA replication initiation and fork processing. CDC7 inhibition mildly activates the ATR pathway, which further limits origin firing; however, to date the relationship between CDC7 and ATR remains controversial. We show that CDC7 and ATR inhibitors are either synergistic or antagonistic depending on the degree of inhibition of each individual kinase. We find that Polypyrimidine Tract Binding Protein 1 (PTBP1) is important for ATR activity in response to CDC7 inhibition and genotoxic agents. Compromised PTBP1 expression makes cells defective in RPA recruitment, genomically unstable, and resistant to CDC7 inhibitors. PTBP1 deficiency affects the expression and splicing of many genes indicating a multifactorial impact on drug response. We find that an exon skipping event in RAD51AP1 contributes to checkpoint deficiency in PTBP1-deficient cells. These results identify PTBP1 as a key factor in replication stress response and define how ATR activity modulates the activity of CDC7 inhibitors.

8.
Cells ; 8(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366086

RESUMO

Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation. First, LA was demonstrated to trigger the depletion of both wildtype and mutant p53 protein in all CRC cells tested without influencing its gene expression and preceded LA-triggered cytotoxicity. Depletion of p53 coincided with a moderate, LA-dependent ROS production, but was not rescued by antioxidant treatment. LA induced the autophagy receptor p62 and differentially modulated autophagosome formation in CRC cells. However, p53 degradation was not mediated via autophagy as shown by chemical inhibition and genetic abrogation of autophagy. LA treatment also stabilized and activated the transcription factor Nrf2 in CRC cells, which was however dispensable for p53 degradation. Mechanistically, p53 was found to be readily ubiquitinylated and degraded by the proteasomal machinery following LA treatment, which did not involve the E3 ubiquitin ligase MDM2. Intriguingly, the combination of LA and anticancer drugs (doxorubicin, 5-fluorouracil) attenuated p53-mediated stabilization of p21 and resulted in synergistic killing in CRC cells in a p53-dependant manner.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácido Tióctico/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Fluoruracila/farmacologia , Células HCT116 , Humanos , Mutação , Proteólise , Proteína Supressora de Tumor p53/genética , Ubiquitinação
9.
World J Gastroenterol ; 24(43): 4880-4892, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30487698

RESUMO

AIM: To establish patient-individual tumor models of rectal cancer for analyses of novel biomarkers, individual response prediction and individual therapy regimens. METHODS: Establishment of cell lines was conducted by direct in vitro culturing and in vivo xenografting with subsequent in vitro culturing. Cell lines were in-depth characterized concerning morphological features, invasive and migratory behavior, phenotype, molecular profile including mutational analysis, protein expression, and confirmation of origin by DNA fingerprint. Assessment of chemosensitivity towards an extensive range of current chemotherapeutic drugs and of radiosensitivity was performed including analysis of a combined radio- and chemotherapeutic treatment. In addition, glucose metabolism was assessed with 18F-fluorodeoxyglucose (FDG) and proliferation with 18F-fluorothymidine. RESULTS: We describe the establishment of ultra-low passage rectal cancer cell lines of three patients suffering from rectal cancer. Two cell lines (HROC126, HROC284Met) were established directly from tumor specimens while HROC239 T0 M1 was established subsequent to xenografting of the tumor. Molecular analysis classified all three cell lines as CIMP-0/ non-MSI-H (sporadic standard) type. Mutational analysis revealed following mutational profiles: HROC126: APCwt , TP53wt , KRASwt , BRAFwt , PTENwt ; HROC239 T0 M1: APCmut , P53wt , KRASmut , BRAFwt , PTENmut and HROC284Met: APCwt , P53mut , KRASmut , BRAFwt , PTENmut . All cell lines could be characterized as epithelial (EpCAM+) tumor cells with equivalent morphologic features and comparable growth kinetics. The cell lines displayed a heterogeneous response toward chemotherapy, radiotherapy and their combined application. HROC126 showed a highly radio-resistant phenotype and HROC284Met was more susceptible to a combined radiochemotherapy than HROC126 and HROC239 T0 M1. Analysis of 18F-FDG uptake displayed a markedly reduced FDG uptake of all three cell lines after combined radiochemotherapy. CONCLUSION: These newly established and in-depth characterized ultra-low passage rectal cancer cell lines provide a useful instrument for analysis of biological characteristics of rectal cancer.


Assuntos
Biomarcadores Tumorais/análise , Células Epiteliais/patologia , Neoplasias Retais/patologia , Reto/citologia , Idoso , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Análise Mutacional de DNA , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Feminino , Fluordesoxiglucose F18/administração & dosagem , Glucose/metabolismo , Humanos , Fígado/citologia , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Mutação , Tolerância a Radiação/efeitos da radiação , Neoplasias Retais/genética , Neoplasias Retais/metabolismo , Neoplasias Retais/terapia , Reto/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nat Commun ; 9(1): 764, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472538

RESUMO

Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe. Mechanistically, HDAC1 and HDAC2 suppress the expression of PPP2R3A/PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2 (PP2A). Genetic elimination of PR130 reveals that PR130 promotes dephosphorylation of ATM by PP2A. Moreover, the ablation of PR130 slows G1/S phase transition and increases the levels of phosphorylated CHK1, replication protein A foci and DNA damage upon replicative stress. Accordingly, stressed PR130 null cells are very susceptible to HDAC inhibition, which abrogates the S phase checkpoint, induces apoptosis and reduces the homologous recombination protein RAD51. Thus, PR130 controls cell fate decisions upon replicative stress.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase do Ponto de Checagem 2/genética , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Oncotarget ; 9(45): 27835-27850, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963241

RESUMO

Irinotecan (CPT-11) and oxaliplatin (L-OHP) are among the most frequently used drugs against colorectal tumors. Therefore, it is important to define the molecular mechanisms that these agents modulate in colon cancer cells. Here we demonstrate that CPT-11 stalls such cells in the G2/M phase of the cell cycle, induces an accumulation of the tumor suppressor p53, the replicative stress/DNA damage marker γH2AX, phosphorylation of the checkpoint kinases ATM and ATR, and an ATR-dependent accumulation of the pro-survival molecule survivin. L-OHP reduces the number of cells in S-phase, stalls cell cycle progression, transiently triggers an accumulation of low levels of γH2AX and phosphorylated checkpoint kinases, and L-OHP suppresses survivin expression at the mRNA and protein levels. Compared to CPT-11, L-OHP is a stronger inducer of caspases and p53-dependent apoptosis. Overexpression and RNAi against survivin reveal that this factor critically antagonizes caspase-dependent apoptosis in cells treated with CPT-11 and L-OHP. We additionally show that L-OHP suppresses survivin through p53 and its downstream target p21, which stalls cell cycle progression as a cyclin-dependent kinase inhibitor (CDKi). These data shed new light on the regulation of survivin by two clinically significant drugs and its biological and predictive relevance in drug-exposed cancer cells.

12.
World J Gastroenterol ; 24(33): 3749-3759, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30197480

RESUMO

AIM: To establish cell line and patient-derived xenograft (PDX) models for neuroendocrine carcinomas (NEC) which is highly desirable for gaining insight into tumor development as well as preclinical research including biomarker testing and drug response prediction. METHODS: Cell line establishment was conducted from direct in vitro culturing of colonic NEC tissue (HROC57). A PDX could also successfully be established from vitally frozen tumor samples. Morphological features, invasive and migratory behavior of the HROC57 cells as well as expression of neuroendocrine markers were vastly analyzed. Phenotypic analysis was done by microscopy and multicolor flow cytometry. The extensive molecular-pathological profiling included mutation analysis, assessment of chromosomal and microsatellite instability; and in addition, fingerprinting (i.e., STR analysis) was performed from the cell line in direct comparison to primary patient-derived tissues and the PDX model established. Drug responsiveness was examined for a panel of chemotherapeutics in clinical use for the treatment of solid cancers. RESULTS: The established cell line HROC57 showed distinct morphological and molecular features of a poorly differentiated large-cell NEC with KI-67 > 50%. Molecular-pathological analysis revealed a CpG island promoter methylation positive cell line with microsatellite instability being absent. The following mutation profile was observed: KRAS (wt), BRAF (mut). A high sensitivity to etoposide, cisplatin and 5-FU could be demonstrated while it was more resistant towards rapamycin. CONCLUSION: We successfully established and characterized a novel patient-derived NEC cell line in parallel to a PDX model as a useful tool for further analysis of the biological characteristics and for development of novel diagnostic and therapeutic options for NEC.


Assuntos
Carcinoma de Células Grandes/patologia , Carcinoma Neuroendócrino/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral/patologia , Colo/patologia , Adulto , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/cirurgia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/cirurgia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Movimento Celular/genética , Colo/cirurgia , Ilhas de CpG/genética , Impressões Digitais de DNA , Metilação de DNA/genética , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Cultura Primária de Células , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Methods Mol Biol ; 1510: 3-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761809

RESUMO

Autophagy is a lysosome-dependent, intracellular pathway for the recycling of cellular components. It plays a pivotal role in both cancer development and the response to chemotherapy. Here we describe how autophagy can be monitored in living cells by flow cytometry using the cationic amphiphilic tracer dye Cyto-ID® Green. The detection of autophagy induction in the human leukemia cell line K562 after the treatment with the HDAC class I inhibitor MS-275 serves as an example for this approach.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Piridinas/farmacologia , Autofagia/genética , Carbocianinas/química , Cloroquina/farmacologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Histona Desacetilases/metabolismo , Humanos , Células K562
14.
Methods Mol Biol ; 1510: 103-113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761816

RESUMO

DNA fiber spreading assay is an invaluable technique to visualize and follow the spatial and temporal progress of individual DNA replication forks. It provides information on the DNA replication progress and its regulation under normal conditions as well as on replication stress induced by environmental genotoxic agents or cancer drugs. The method relies on the detection of incorporated thymidine analogues during DNA synthesis in the S phase of the cell cycle by indirect immunofluorescence. Here, we describe the procedure established in our laboratories for sequential pulse labeling of human cells with 5-chloro-2'-deoxyuridine (CldU) and 5-iodo-2'-deoxyuridine (IdU), cell lysis, and DNA fiber spreading on slides and sequential immunodetection of the incorporated thymidine analogues by primary antibodies recognizing specifically CldU or IdU alone. We describe also the laser scanning imaging, classification, and measurement of the detected DNA fiber tracks. The obtained quantitative data can be evaluated statistically to reveal the immediate or long-term effects of DNA-damaging agents, DNA repair inhibitors, and epigenetic modulators like HDAC inhibitors on DNA replication in normal and tumor cells.


Assuntos
Bioensaio , DNA/química , Desoxiuridina/análogos & derivados , Inibidores de Histona Desacetilases/farmacologia , Idoxuridina/metabolismo , Coloração e Rotulagem/métodos , Anticorpos/química , Benzamidas/farmacologia , DNA/metabolismo , Replicação do DNA , Desoxiuridina/química , Desoxiuridina/metabolismo , Imunofluorescência/métodos , Células HCT116 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Idoxuridina/química , Microscopia Confocal , Piridinas/farmacologia , Fase S
15.
Cell Signal ; 29: 218-225, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838375

RESUMO

The transcription factors NF-κB and p53 as well as their crosstalk determine the fate of tumor cells upon therapeutic interventions. Replicative stress and cytokines promote signaling cascades that lead to the co-regulation of p53 and NF-κB. Consequently, nuclear p53/NF-κB signaling complexes activate NF-κB-dependent survival genes. The 18 histone deacetylases (HDACs) are epigenetic modulators that fall into four classes (I-IV). Inhibitors of histone deacetylases (HDACi) become increasingly appreciated as anti-cancer agents. Based on their effects on p53 and NF-κB, we addressed whether clinically relevant HDACi affect the NF-κB/p53 crosstalk. The chemotherapeutics hydroxyurea, etoposide, and fludarabine halt cell cycle progression, induce DNA damage, and lead to DNA fragmentation. These agents co-induce p53 and NF-κB-dependent gene expression in cell lines from breast and colon cancer and in primary chronic lymphatic leukemia (CLL) cells. Using specific HDACi, we find that the class I subgroup of HDACs, but not the class IIb deacetylase HDAC6, are required for the hydroxyurea-induced crosstalk between p53 and NF-κB. HDACi decrease the basal and stress-induced expression of p53 and block NF-κB-regulated gene expression. We further show that class I HDACi induce senescence in pancreatic cancer cells with mutant p53.


Assuntos
Histona Desacetilases/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Dano ao DNA , DNA de Neoplasias/metabolismo , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hidroxiureia/farmacologia , Modelos Biológicos , Mutação/genética , Neoplasias/genética , Vidarabina/análogos & derivados , Vidarabina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA