Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 27(8): 755-765, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575294

RESUMO

Bacterial levansucrases produce ß(2,6)-linked levan-type polysaccharides using sucrose or sucrose analogs as donor/acceptor substrates. However, the dominant reaction of Bacillus megaterium levansucrase (Bm-LS) is hydrolysis. Single domain levansucrases from Gram-positive bacteria display a wide substrate-binding pocket with open access to water, challenging engineering for transfructosylation-efficient enzymes. We pursued a shift in reaction specificity by either modifying the water distribution in the active site or the coordination of the catalytic acid/base (E352) and the nucleophile (D95), thus affecting the fructosyl-transfer rate and allowing acceptors other than water to occupy the active site. Two serine (173/422) and two water-binding tyrosine (421/439) residues located in the first shell of the catalytic pocket were modified. Library variants of S173, Y421 and S422, which coordinate the position of D95 and E352, show increased transfructosylation (30-200%) and modified product spectra. Substitutions at position 422 have a higher impact on sucrose affinity, while changes at position 173 and 421 have a strong effect on the overall catalytic rate. As most retaining glycoside hydrolases (GHs) Bm-LS catalyzes hydrolysis and transglycosylation via a double displacement reaction involving two-transition states (TS1 and TS2). Hydrogen bonds of D95 with the side chains of S173 and S422 contribute a total of 2.4 kcal mol-1 to TS1 stabilization, while hydrogen bonds between invariant Y421, E352 and the glucosyl C-2 hydroxyl-group of sucrose contribute 2.15 kcal mol-1 stabilization. Changes at Y439 render predominantly hydrolytic variants synthesizing shorter oligosaccharides.

2.
Chembiochem ; 18(20): 2012-2015, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28796424

RESUMO

Functionalized rare sugars were synthesized with 2-, 3-, and 6-tosylated glucose derivatives as acceptor substrates by transglucosylation with sucrose and the glucansucrase GTFR from Streptococcus oralis. The 2- and 3-tosylated glucose derivatives yielded the corresponding 1,6-linked disaccharides (isomaltose analogues), whereas the 6-tosylated glucose derivatives resulted in 1,3-linked disaccharides (nigerose analogue) with high regioselectivity in up to 95 % yield. Docking studies provided insight into the binding mode of the acceptors and suggested two different orientations that were responsible for the change in regioselectivity.


Assuntos
Glucose/síntese química , Glicosiltransferases/metabolismo , Técnicas de Química Sintética , Glucose/química , Glucose/metabolismo , Glicosilação , Glicosiltransferases/química , Simulação de Acoplamento Molecular , Conformação Proteica , Streptococcus oralis/enzimologia
3.
Chembiochem ; 13(1): 149-56, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22124943

RESUMO

An isomelezitose synthase was redesigned out of the sucrose isomerase from Protaminobacter rubrum for the synthesis of isomelezitose (6-O(F)-glucosylsucrose), a potential nutraceutical. The variants F297A, F297P, R333K, F321A_F319A and E428D catalyze the formation of isomelezitose in up to 70 % yield.


Assuntos
Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutagênese Sítio-Dirigida , Trissacarídeos/biossíntese , Transferases Intramoleculares/química , Proteobactérias/enzimologia , Trissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA