RESUMO
In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s â 10a' resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between -8 and -9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.
RESUMO
High resolution electron kinetic energy spectra of iron pentacarbonyl (Fe(CO)5) are studied in the photon energy range of 40-90 eV. The relative yield of photolines associated with the Fe 3d level shows a Fano line shape at photon energies of 61 eV. The increase in signal from the 3d level is indicative of resonant photoemission involving 3p-3d transitions at the M edge of iron. The signature of this resonance is also present in photolines typically attributed to be mostly CO in character. We use the modulation depth of the Fano resonances to reinterpret the photoelectron lines in the literature.
RESUMO
The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.
RESUMO
Conformational isomers (conformers) of molecules play a decisive role in biology and organic chemistry. However, experimental methods for investigating chemical reaction dynamics are typically not conformer-sensitive. We report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of α-phellandrene undergoing an electrocyclic ring-opening reaction. We directly imaged the evolution of a specific set of α-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide considerable detail of how conformation influences the time scale and quantum efficiency of photoinduced ring-opening reactions.
RESUMO
The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.
Assuntos
Elétrons , Lasers , Síncrotrons , Desenho de Equipamento , Fibras Ópticas , Fatores de Tempo , Raios XRESUMO
We create a transient Bragg grating in a high-harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.
RESUMO
We investigate the creation of double K-shell holes in N2 molecules via sequential absorption of two photons on a time scale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the first with two core holes on the same N atom, and the second with one core hole on each N atom. We report the first direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type.
Assuntos
Elétrons , Nitrogênio , Fenômenos Físicos , Lasers , Espectroscopia Fotoeletrônica , Teoria Quântica , Síncrotrons , Raios XRESUMO
Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.
RESUMO
We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra.
Assuntos
Lasers , Espectrofotometria Ultravioleta/métodos , Calibragem , Simulação por Computador , Eletrônica , Desenho de Equipamento , Luz , Óptica e Fotônica , Teoria Quântica , Espalhamento de RadiaçãoRESUMO
The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.
RESUMO
Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method's impressive electronic structure sensitivity for excited-state investigations.Many photo-induced processes such as photosynthesis occur in organic molecules, but their femtosecond excited-state dynamics are difficult to track. Here, the authors exploit the element and site selectivity of soft X-ray absorption to sensitively follow the ultrafast ππ*/nπ* electronic relaxation of hetero-organic molecules.
RESUMO
Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.
RESUMO
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.
RESUMO
Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation--X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C-O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.
RESUMO
We perform time resolved pump-probe spectroscopy on small halogen molecules ClF, Cl2, Br2, and I2 embedded in rare gas solids (RGS). We find that dissociation, angular depolarization, and the decoherence of the molecule is strongly influenced by the cage structure. The well ordered crystalline environment facilitates the modelling of the experimental angular distribution of the molecular axis after the collision with the rare gas cage. The observation of many subsequent vibrational wave packet oscillations allows the construction of anharmonic potentials and indicate a long vibrational coherence time. We control the vibrational wave packet revivals, thereby gaining information about the vibrational decoherence. The coherence times are remarkable larger when compared to the liquid or high pressure gas phase. This fact is attributed to the highly symmetric molecular environment of the RGS. The decoherence and energy relaxation data agree well with a perturbative model for moderate vibrational excitation and follow a classical model in the strong excitation limit. Furthermore, a wave packet interferometry scheme is applied to deduce electronic coherence times. The positions of those cage atoms, excited by the molecular electronic transitions are modulated by long living coherent phonons of the RGS, which we can probe via the molecular charge transfer states.
RESUMO
Three approaches are combined to study the electronic states' dynamics in the photodissociation of F(2) and ClF in solid argon. These include (a) semiclassical surface-hopping simulations of the nonadiabatic processes involved. These simulations are carried out for the F(2) molecule in a slab of 255 argon atoms with periodic boundary conditions at the ends. The full manifold of 36 electronic states relevant to the process is included. (b) The second approach involves quantum mechanical reduced-dimensionality models for the initial processes induced by a pump laser pulse, which involve wavepacket propagation for the preoriented ClF in the frozen argon lattice and incorporate the important electronic states. The focus is on the study of quantum coherence effects. (c) The final approach is femtosecond laser pump-probe experiments for ClF in Ar. The combined results for the different systems shed light on general properties of the nonadiabatic processes involved, including the singlet to triplet and intertriplet transition dynamics. The main findings are (1) that the system remains in the initially excited-state only for a very brief, subpicosecond, time period. Thereafter, most of the population is transferred by nonadiabatic transitions to other states, with different time constants depending on the systems. (2) Another finding is that the dynamics is selective with regard to the electronic quantum numbers, including the Lambda and Omega quantum numbers, and the spin of the states. (3) The semiclassical simulations show that prior to the first "collision" of the photodissociated F atom with an Ar atom, the argon atoms can be held frozen, without affecting the process. This justifies the rigid-lattice reduced-dimensionality quantum model for a brief initial time interval. (4) Finally, degeneracies between triplets and singlets are fairly localized, but intertriplet degeneracies and near degeneracies can span an extensive range. The importance of quantum effects in photochemistry of matrix-isolated molecules is discussed in light of the results.
RESUMO
The intramolecular wave packet dynamics on the electronic B (3pi0) potential of Br2 in solid argon is induced and interrogated by femtosecond pump-probe spectroscopy. An effective potential of the chromophore in the solid is derived from the wave packet period for different excitation photon energies. Deep in the potential well, it is consistent with vibrational energies from wavelength-resolved spectra. It extends to higher energies, where the vibrational bands merge to a continuum, and even beyond the dissociation limit, thus quantifying the cage effect of the argon matrix. This advantage of pump-probe spectroscopy is related to a reduced contribution of homogeneous and inhomogeneous line broadenings. The vibrational energy relaxation rates are determined by a variation of the probe window spatial position via the probe quantum energy. A very large energy loss in the first excursion of the wave packet is observed near the dissociation limit. This strong interaction with the argon matrix is directly displayed in an experimental trajectory.
RESUMO
A long lasting coherent oscillation with a sharp frequency of f(p) = 2 THz is observed in fs pump probe spectra for B <-- X excitation of Br2 in solid argon. It exactly matches the frequency of a coherent zone boundary phonon (ZBP) of the Ar environment. The ZBPs have a vanishing group velocity v(g), thus they stay in the vicinity of the chromophore. They originate from a displacive excitation of coherent phonons (DECP) initiated in the electronic B <-- X transition, because neither f(p) nor the phase of the oscillation do depend on the B state vibrational dynamics. A model calculation shows that an expansion of the electronic density in going from the electronic ground state X to the B state kicks the Ar atoms in the Br2 vicinity. In addition, a group of Ar atoms in the (100) plane is decoupled from the intramolecular dynamics afterwards. The ZBP modulates the solvation energy of the terminal charge transfer states used in the probe transition from the B state and thus the detection sensitivity. The contrast is enhanced by probing the B state wave packet with the cutting edge of the probe window. This is in full accordance with a study for I2 : Kr.
RESUMO
Electronic and vibrational coherences of Cl2 embedded in solid Ar are investigated by exciting to the B state with a phase-locked pulse pair from an unbalanced Michelson interferometer, where the chirp difference matches the B state anharmonicity. Recording the A' --> X fluorescence after relaxation is compared to probing to charge transfer states by a third pulse. The three-pulse experiment delivers more details on the decoherence processes. The signal modulation due to phase tuning up to the third vibrational round-trip time indicates that the electronic coherence in the B <-- X transition is preserved for more than 660 fs in the solid Ar environment where many body electronic interactions take place. Vibrational coherence lasts longer than 3 ps according to the observed half revival of the wavepacket. Control of the coupling between wavepacket motion and lattice oscillation is demonstrated by tuning the relative phase between the phase-locked pulses, preparing wavepackets predominantly composed of either zero-phonon lines or phonon side bands.