Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(34): 11055-11059, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29786941

RESUMO

The biosynthesis of thebaine is based on the regioselective, intramolecular, oxidative coupling of (R)-reticuline. For decades, chemists have sought to mimic this coupling by using stoichiometric oxidants. However, all approaches to date have suffered from low yields or the formation of undesired regioisomers. Electrochemistry would represent a sustainable alternative in this respect but all attempts to accomplish an electrochemical synthesis of thebaine have failed so far. Herein, a regio- and diastereoselective anodic coupling of 3',4',5'-trioxygenated laudanosine derivatives is presented, which finally enables electrochemical access to (-)-thebaine.

2.
Anal Chem ; 89(3): 1632-1641, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28105805

RESUMO

Femtosecond laser ablation/ionization mass spectrometry (LIMS) has been applied to probe the spatial element composition of three ternary Cu-Sn-Pb model bronze alloys (lead bronzes: CuSn10Pb10, CuSn7Pb15, and CuSn5Pb20), which were recently identified as high-performance cathode materials in the context of electro-organic synthesis (dehalogenation, deoxygenation) of pharmaceutically relevant building blocks. The quantitative and spatially resolved element analysis of such cathode materials will help in understanding the observed profound differences in their electrochemical reactivity and stability. For that purpose, we developed a measurement procedure using the LIMS technique which allows analyzing the element composition of these ternary alloys in all three spatial dimensions. Their chemical composition was determined spotwise, by ablating material from various surface locations on a 4 × 4 raster array (50 µm pitch distance, ablation crater diameter of ∼20 µm). The element analyses show significant chemical inhomogeneities in all three ternary bronze alloys with profound local deviations from their nominal bulk compositions and indicate further differences in the nature and origin of these compositional inhomogeneities. In addition, the element analyses showed specific compositional correlations among the major elements (Cu, Sn, and Pb) in these alloys. On selected sample positions minor (Ni, Zn, Ag, and Sb) and trace elements (C, P, Fe, and As) were quantified. These results are in agreement with inductively coupled plasma collision/reaction interface mass spectrometry (ICP-CRI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reference measurements, thus proving the LIMS depth profiling technique as a powerful alternative methodology to conventional quantification techniques with the advantage, however, of a highly localized measurement capability.

3.
Chemistry ; 21(40): 13878-82, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26250701

RESUMO

Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives.

4.
J Am Chem Soc ; 136(33): 11830-8, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25050629

RESUMO

A tris(bipyridine) ligand 1 with two BINOL (BINOL = 2,2'-dihydroxy-1,1'-binaphthyl) groups has been prepared in two enantiomerically pure forms. This ligand undergoes completely diastereoselective self-assembly into D2-symmeteric double-stranded trinuclear helicates upon coordination to copper(I) and silver(I) ions and to D3-symmetric triple-stranded trinuclear helicates upon coordination to copper(II), zinc(II), and iron(II) ions as demonstrated by mass spectrometry, NMR and CD spectroscopy in combination with quantum chemical calculations and X-ray diffraction analysis. According to the calculations, the single diastereomers that are formed during the self-assembly process are strongly preferred compared to the next stable diastereomers. Due to this strong preference, the self-assembly of the helicates from racemic 1 proceeds in a completely narcissistic self-sorting manner with an extraordinary high degree of self-sorting that proves the power and reliability of this approach to achieve high-fidelity diastereoselective self-assembly via chiral self-sorting to get access to stereochemically well-defined nanoscaled objects. Furthermore, mass spectrometric methods including electron capture dissociation MS(n) experiments could be used to elucidate the redox behavior of the copper helicates.

5.
Angew Chem Int Ed Engl ; 53(14): 3739-42, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24590898

RESUMO

An enantiomerically pure BINOL-based bis(3-pyridyl) ligand 1 assembles into a homochiral [Pd4(1)8] complex upon coordination to tetravalent Pd(II) ions. The formation of this aggregate is templated by two tetrafluoroborate counterions that are encapsulated in two peripheral cavities. The resulting structure is a new structural motif for this kind of metallosupramolecular assemblies that arranges the palladium ions in a distorted tetrahedral fashion and forces ligand 1 to adopt two different conformations. Both phenomena are unique and cause an overall three-dimensional structure that has another confined, chiral, and hydrophilic central cavity.

6.
Angew Chem Int Ed Engl ; 53(6): 1693-8, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24453210

RESUMO

Coordination-driven self-assembly is one of the most powerful strategies to prepare nanometer-sized discrete (supra)molecular assemblies. Herein, we report on the use of two constitutionally isomeric BINOL-based bis(pyridine) ligands for this purpose. Upon coordination to Pd(II) ions these self-assemble into enantiomerically pure endo- and exo-functionalized hexa- and dodecanuclear metallosupramolecular spheres with a chiral skeleton depending on the substitution pattern of the BINOL core. These aggregates were characterized by NMR, MS, DLS, TEM, and EELS as well as ECD. Furthermore, experimental ECD data could be compared to those obtained from theoretical simulations using a simplified Tamm-Dancoff approximation to time-dependent DFT to rationalize the extraordinary high molar circular dichroisms. Despite the rotational freedom around the central aryl-aryl bond of these ligands, the self-assembly process happens completely selective in a "narcissistic" self-recognition manner.

7.
Chemistry ; 19(33): 10890-4, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23824836

RESUMO

A 1,1'-binaphthyl-based bis(pyridine) ligand (1) was prepared in racemic and enantiomerically pure form to study the formation of [Pd2(1)4] complexes upon coordination to palladium(II) ions with regard to the degree of chiral self-sorting. The self-assembly process proceeds in a highly selective narcissistic self-recognition manner to give only homochiral supramolecular M2 L4 cages, which were characterized by ESI-MS, NMR, and electronic circular dichroism (ECD) spectroscopy, as well as by single-crystal XRD analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA