Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32814145

RESUMO

Biological fouling is an unwanted phenomenon that results in economic losses to the shipping industry. To prevent fouling, antifouling paints are used. DCOIT (4,5- dichloro-2-n-octyl-4-isothiazolin-3-one) is a biocide present in many antifouling paint formulations, and is toxic to a wide range of organisms. The aim of the present study was to evaluate the effects of DCOIT on oxidative stress indicators of the brown mussel, Perna perna. Molecular (SOD-like, GSTO-like and MGST-like mRNA levels) and biochemical (activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), and levels of glutathione (GSH), reactive oxygen species (ROS) and protein carbonyls (PCO)) components were evaluated. Further, levels of biomarkers were assessed in the gills and digestive glands of mussels. Bivalves were exposed to DCOIT (control, 0.1 µg/L and 10 µg/L) for up to 96 h. DCOIT exposure decreased GSH content in gills. Moreover, exposure to DCOIT also decreased CAT activity in the gills and digestive glands of mussels. GST activity increased in digestive gland after exposure for 24 h to both concentrations of DCOIT tested. SOD activity, ROS levels and PCO content were not affected by exposure to the contaminant. Regarding the molecular biomarkers evaluated, DCOIT exposure altered mRNA levels of SOD-like in both tissues after 24 and 96 h of exposure, and decreased MGST-like mRNA levels in the digestive gland after 96 h of exposure to the chemical. These findings suggested that exposure to DCOIT may alter the biochemical and molecular functioning of P. perna, which may harm the species.


Assuntos
Desinfetantes/toxicidade , Estresse Oxidativo , Perna (Organismo)/metabolismo , Tiazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Perna (Organismo)/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Alimentos Marinhos
2.
Mar Pollut Bull ; 157: 111321, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658686

RESUMO

Dichlofluanid is a fungicide employed as a booster biocide in antifouling paints, but information its toxicity to aquatic organisms is scarce. This study aims to evaluate biomarker responses in the mussel Perna perna exposed to dichlofluanid. Mussels were exposed to 0 (control), 0.1 µg/L (environmental concentration), 10, and 100 µg/L of dichlofluanid for 24 and 96 h. Byssus formation, oxygen consumption, and oxidative stress response were evaluated in gills and digestive glands. The results demonstrated that even the lowest dichlofluanid concentration causes a reduction in byssus biomass and water content. The higher concentrations caused an acute increase in oxygen consumption, which only returned to control levels after 96 h of exposure. ACAP levels and antioxidant enzyme activities were affected in both tissues with a larger effect observed in gill tissues as demonstrated by the IBR index. The overall results demonstrated that environmentally relevant concentrations of dichlofluanid would be deleterious to aquatic organisms.


Assuntos
Desinfetantes , Perna (Organismo) , Poluentes Químicos da Água , Compostos de Anilina , Animais , Antioxidantes , Brânquias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA