Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Cell Physiol ; 234(4): 5044-5055, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30187478

RESUMO

Cell-based therapies using adipose-derived mesenchymal stromal cells (ADMSCs) have shown promising results for the treatment of osteoarthritis (OA). In fact, ADMSCs are now indicated as one of the most powerful cell sources through their immunomodulatory and anti-inflammatory activities. Recently, an innovative one-step closed device was developed to obtain microfragmented adipose tissue (MF) to avoid the need for good manufacturing practices for ADMSCs expansion while maintaining their regenerative potential. The aim of this study was to assess the mechanisms of action of MF and ADMSCs from MF (MF-ADMSCs) on an inflammatory cell model of OA synoviocytes. We found that MF produced low levels of inflammatory factors such as interleukin 6 (IL-6), CC-chemokine ligand 5/receptor-activated normal T-cell expressed and secreted (CCL5/RANTES), CC-chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1), and CC-chemokine ligand 3/macrophage inflammatory protein-1α (CCL3/MIP-1α), and a higher level only of CXC-chemokine ligand 8/interleukin 8 compared with MF-ADMSCs. Matrix metalloproteinase 9 (MMP-9) degradative factor but released a lower level of its inhibitor tissue inhibitor of the metalloproteinase (TIMP-1). MF in coculture with synoviocytes significantly induced both the metabolic activity and the release of IL-6. In contrast, MF, not MF-ADMSCs, partially decreased CCL5/RANTES. Moreover, MF reduced the release of both macrophage-specific chemokines (CCL2/MCP-1 and CCL3/MIP-1α) and degradative marker MMP-9. Interestingly, MF increased TIMP-1 (the MMP-9 inhibitor) and down-modulated toll-like receptor (TLR4) receptor and key molecules of NFκB pathways. These data evidenced different effects of MF versus MF-ADMSCs on inflamed synoviocytes. MF reduced typical macrophages markers and its potentiality by switching off macrophages activity was strictly dependent on TLR4 and NFκB signaling.


Assuntos
Tecido Adiposo/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Adulto , Idoso , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macrófagos/imunologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Sinoviócitos/imunologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Connect Tissue Res ; 59(sup1): 42-45, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29745809

RESUMO

Purpose/Aim of the study. Collagen type XV (ColXV) was identified, in our previews studies, as a novel component of bone extracellular matrix. The present study aims to investigate ColXV localization during mineralization of osteodifferentiated human mesenchymal stem cells (hMSCs). MATERIAL AND METHODS: hMSCs cultured in osteogenic medium have been analyzed at day 14 and 28 for mineral matrix deposition by alizarin red S staining, ultrastructural analysis and ColXV localization by immunogold electron microscopy. RESULTS: Our data show an intimate association between ColXV and fibrillar components in areas localized far from mineralized nodules. CONCLUSIONS: We have demonstrated the efficacy of ultrastructural analysis, combined with immunocytochemistry, to establish a temporal and spatial localization of ColXV. This data, added to previous evidences, contribute to validate the negative effects of calcium deposits on ColXV expression.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Colágeno/biossíntese , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Microscopia Imunoeletrônica
3.
J Cell Mol Med ; 21(9): 2236-2244, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28332281

RESUMO

We have previously demonstrated that collagen type XV (ColXV) is a novel bone extracellular matrix (ECM) protein. It is well known that the complex mixture of multiple components present in ECM can help both to maintain stemness or to promote differentiation of stromal cells following change in qualitative characteristics or concentrations. We investigated the possible correlation between ColXV expression and mineral matrix deposition by human mesenchymal stromal cells (hMSCs) with different osteogenic potential and by osteoblasts (hOBs) that are able to grow in culture medium with or without calcium. Analysing the osteogenic process, we have shown that ColXV basal levels are lower in cells less prone to osteo-induction such as hMSCs from Wharton Jelly (hWJMSCs), compared to hMSCs that are prone to osteo-induction such as those from the bone marrow (hBMMSCs). In the group of samples identified as 'mineralized MSCs', during successful osteogenic induction, ColXV protein continued to be detected at substantial levels until early stage of differentiation, but it significantly decreased and then disappeared at the end of culture when the matrix formed was completely calcified. The possibility to grow hOBs in culture medium without calcium corroborated the results obtained with hMSCs demonstrating that calcium deposits organized in a calcified matrix, and not calcium 'per se', negatively affected ColXV expression. As a whole, our data suggest that ColXV may participate in ECM organization in the early-phases of the osteogenic process and that this is a prerequisite to promote the subsequent deposition of mineral matrix.


Assuntos
Colágeno/metabolismo , Osteogênese , Calcificação Fisiológica , Matriz Extracelular/metabolismo , Humanos , Osteoblastos/metabolismo
4.
J Cell Physiol ; 232(12): 3574-3585, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28121025

RESUMO

Mesenchymal stromal cells (MSCs) are key players in the repair or regeneration of the damaged bone tissue. However, heterogeneity exists between MSCs derived from different donors in their bone formation ability both in vitro and in vivo. The identification of markers defining MSCs with different functional phenotypes is fundamental to maximize their clinical potential. In our previous in vivo study, impaired expression in MSCs of cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE), the two key enzymes in the catabolic pathway of homocysteine, was associated to decreased bone formation and to the onset of osteoporosis in mice. Here, we investigated whether osteogenic differentiation of human MSCs (hMSCs) modulates the expression of CBS and CSE. The expression of CBS and CSE was also assessed during chondrogenesis to confirm the specificity of their expression during osteogenesis. hMSCs displayed a heterogeneous mineralizing capacity between donors (70% of the samples mineralized, while 30% did not mineralize). Inducible expression of CBS and CSE was found to be associated with a mineralizing phenotype in hMSCs. In particular, up-regulation of CSE was restricted to hMSCs undergoing mineralization. During chondrogenesis, CBS was significantly up-regulated while CSE expression was not affected. Ex-vivo findings confirmed that mature h-osteoblasts (hOBs) show consistently higher expression of CBS and CSE than hMSCs. Our data provide the first evidence that the expression of CBS and CSE in hMSCs closely correlates with the transition of hMSCs toward the osteoblastic phenotype and that CSE may constitute a novel marker of osteogenic differentiation.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/enzimologia , Osteogênese , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Condrogênese , Humanos , Fenótipo , Fatores de Tempo
5.
Connect Tissue Res ; 56(6): 440-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26075645

RESUMO

AIM: Increased age is the most prominent risk factor for the initiation and progression of osteoarthritis (OA). The effects of human growth hormone (hGH) combined or not with hyaluronan amide derivative (HAD) were evaluated on human OA chondrocytes, to define their biological action and potentiality in OA treatment. MATERIAL AND METHODS: Cell viability, metabolic activity, gene expression and factors released were tested at different time points on chondrocytes treated with different concentrations of hGH (0.01-10 µg/ml) alone or in combination with HAD (1 mg/ml). RESULTS: We found that OA chondrocytes express GH receptor and that the different doses of hGH tested did not affect cell viability, metabolic activity or the expression of collagen type 2, 1, or 10 nor did it induce the release of IGF-1 or FGF-2. Conversely, hGH treatment increased the expression of hyaluronan receptor CD44. HAD combined with hGH reduced metabolic activity, IL6 release and gene expression, but not the suppressor of cytokine signaling 2 (SOCS2), which was significantly induced and translocated into the nucleus. The parameters analyzed, independently of the treatments used proportionally decreased with increasing age of the patients. CONCLUSIONS: hGH only induced CD44 receptor on OA chondrocytes but did not affect other parameters, such as chondrocytic gene markers or IGF-1 or FGF-2 release. HAD reduced all the effects induced by hGH partially through a significant induction of SOCS2. These data show that GH or HAD treatment does not influence the response of the OA chondrocytes, thus the modulation of cellular response is age-independent.


Assuntos
Envelhecimento , Condrócitos/metabolismo , Hormônio do Crescimento Humano/farmacologia , Ácido Hialurônico , Osteoartrite do Quadril/metabolismo , Idoso , Células Cultivadas , Condrócitos/patologia , Feminino , Humanos , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/farmacologia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/patologia
6.
Arthritis Rheum ; 65(5): 1271-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23613363

RESUMO

OBJECTIVE: To examine the effect of different sources of good manufacturing practice clinical grade adipose-derived mesenchymal stem cells (AD-MSCs) on inflammatory factors in osteoarthritic (OA) chondrocytes and synoviocytes. METHODS: AD-MSCs from infrapatellar Hoffa fat, subcutaneous (SC) hip fat, and SC abdominal fat were cocultured in Transwells with chondrocytes or synoviocytes. Inflammatory factors (interleukin-1ß [IL-1ß], tumor necrosis factor α, IL-6, CXCL1/growth-related oncogene α, CXCL8/IL-8, CCL2/monocyte chemotactic protein 1, CCL3/macrophage inflammatory protein 1α, and CCL5/RANTES) were evaluated by quantitative reverse transcription-polymerase chain reaction or multiplex bead-based immunoassay. The role of different immunomodulators was analyzed. RESULTS: All the inflammatory factors analyzed were down-modulated at the messenger RNA or protein level independently by all 3 AD-MSC sources or by allogeneic AD-MSCs used in coculture with chondrocytes or synoviocytes. Inflammatory factor down-modulation was observed only when AD-MSCs were cocultured with chondrocytes or synoviocytes that produced high levels of inflammatory factors, but no effect was observed in cells that produced low levels of those factors, thus highlighting a dependence of the AD-MSC effect on existing inflammation. The immunomodulators IL-10, IL-1 receptor antagonist, fibroblast growth factor 2, indoleamine 2,3-dioxygenase 1, and galectin 1 were not involved in AD-MSC effects, whereas the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2 ) pathway exerted a role in the mechanism of antiinflammatory AD-MSC action. CONCLUSION: The antiinflammatory effects of AD-MSCs are probably not dependent on AD-MSC adipose tissue sources and donors but rather on the inflammatory status of OA chondrocytes and synoviocytes. AD-MSCs seem to be able to sense and respond to the local environment. Even though a combination of different molecules may be involved in AD-MSC effects, the COX-2/PGE2 pathway may play a role, suggesting that AD-MSCs may be useful for therapies in osteoarticular diseases.


Assuntos
Adipócitos/citologia , Condrócitos/citologia , Dinoprostona/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoartrite/patologia , Membrana Sinovial/citologia , Idoso , Biomarcadores/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Condrócitos/metabolismo , Técnicas de Cocultura , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Membrana Sinovial/metabolismo
7.
ACS Nano ; 18(3): 2047-2065, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38166155

RESUMO

The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.


Assuntos
Condrogênese , Proteômica , Nanogéis , Hidrogéis/farmacologia , Diferenciação Celular , Engenharia Tecidual
8.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998321

RESUMO

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Adipócitos Marrons/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tecido Adiposo Marrom/metabolismo
9.
Bone Rep ; 19: 101728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076483

RESUMO

COL2A1 gene encodes the alpha-1 chain of type-II procollagen. Heterozygous pathogenic variants are associated with the broad clinical spectrum of genetic diseases known as type-II collagenopathies. We aimed to characterize the NM_001844.5:c.1330G>A;p.Gly444Ser variant detected in the COL2A1 gene through trio-based prenatal exome sequencing in a fetus presenting a severe skeletal phenotype at 31 Gestational Weeks and in his previously undisclosed mild-affected father. Functional studies on father's cutaneous fibroblasts, along with in silico protein modeling and in vitro chondrocytes differentiation, showed intracellular accumulation of collagen-II, its localization in external Golgi vesicles and nuclear morphological alterations. Extracellular matrix showed a disorganized fibronectin network. These results showed that p.Gly444Ser variant alters procollagen molecules processing and the assembly of mature type-II collagen fibrils, according to COL2A1-chain disorganization, displayed by protein modeling. Clinical assessment at 38 y.o., through a reverse-phenotyping approach, revealed limp gait, short and stocky appearance. X-Ray and MRI showed pelvis asymmetry with severe morpho-structural alterations of the femoral heads bilaterally, consistent with a mild form of type-II collagenopathy. This study shows how the fusion of genomics and clinical expertise can drive a diagnosis supported by cellular and bioinformatics studies to effectively establish variants pathogenicity.

10.
J Cell Mol Med ; 16(4): 740-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21645238

RESUMO

The pathways that control mesenchymal stem cells (MSCs) differentiation are not well understood, and although some of the involved transcription factors (TFs) have been characterized, the role of others remains unclear. We used human MSCs from tibial plateau (TP) trabecular bone, iliac crest (IC) bone marrow and Wharton's jelly (WJ) umbilical cord demonstrating a variability in their mineral matrix deposition, and in the expression levels of TFs including Runx2, Sox9, Sox5, Sox6, STAT1 and Slug, all involved in the control of osteochondroprogenitors differentiation program. Because we reasoned that the basal expression level of some TFs with crucial role in the control of MSC fate may be correlated with osteogenic potential, we considered the possibility to affect the hMSCs behaviour by using gene silencing approach without exposing cells to induction media. In this study we found that Slug-silenced cells changed in morphology, decreased in their migration ability, increased Sox9 and Sox5 and decreased Sox6 and STAT1 expression. On the contrary, the effect of Slug depletion on Runx2 was influenced by cell type. Interestingly, we demonstrated a direct in vivo regulatory action of Slug by chromatin immunoprecipitation, showing a specific recruitment of this TF in the promoter of Runx2 and Sox9 genes. As a whole, our findings have important potential implication on bone tissue engineering applications, reinforcing the concept that manipulation of specific TF expression levels may elucidate MSC biology and the molecular mechanisms, which promote osteogenic differentiation.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/fisiologia , Animais , Apoptose , Sequência de Bases , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Primers do DNA , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/imunologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOX9/genética , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Cell Physiol ; 227(8): 3151-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22034088

RESUMO

Fluctuation in extracellular calcium (Ca(2+)) concentration occurs during bone remodeling. Free ionized Ca(2+) plays a critical role in regulating osteoblast functions. We analyzed the effects of different concentrations of free ionized Ca(2+) (0.5, 1.3, and 2.6 mM) on human osteoblasts and we evaluated osteoblastic phenotype (marker expression and cell morphology) and functions (osteogenic differentiation, cell proliferation, and cell signaling). Our data show human osteoblasts that chronically stimulated with 0.5, 1.3, or 2.6 mM Ca(2+) significantly increase intracellular content of alkaline phosphatase, collagen type I, osteocalcin, and bone sialoprotein, whereas collagen type XV was down-modulated and RUNX2 expression was not affected. We also found a Ca(2+) concentration-dependent increase in osteogenic differentiation and cell proliferation, associated to an increase of signaling protein PLCß1 and p-ERK. Human osteoblast morphology was affected by Ca(2+) as seen by the presence of numerous nucleoli, cells in mitosis, cell junctions, and an increased number of vacuoles. In conclusion, our data show a clear phenotypical and functional effect of extracellular Ca(2+) on human osteoblasts and support the hypothesis of a direct role of this cation in the bone remodeling processes.


Assuntos
Cálcio/metabolismo , Cálcio/farmacologia , Colágeno/metabolismo , Osteoblastos/efeitos dos fármacos , Osteocalcina/metabolismo , Idoso , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Remodelação Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Osteoblastos/metabolismo , Osteocalcina/genética
12.
Exp Cell Res ; 317(8): 1159-68, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21182836

RESUMO

CXCL12/CXCR4 chemokine/receptor axis signaling has recently been found to play an important role in the remodeling of bone tissue, but little is known about the molecular mechanisms that are involved. The present study shows that CXCL12 is present at high levels both in human mesenchymal stem cells (hMSCs) and primary osteoblasts (hOBs). When osteogenesis was induced, CXCL12 expression was strictly confined to mineralized nodules. To investigate what mechanisms contribute to the maintenance of a correct expression of CXCL12 in bone cellular context, we analyzed the relationship between CXCL12 and Slug, a transcription factor recently associated with osteoblast maturation. By gene silencing and chromatin immunoprecipitation assay, we showed that both proteins are required for the mineralization process and CXCL12 is transcriptionally and functionally regulated by Slug, which is recruited at specific sites to its gene promoter in vivo. These findings showed for the first time a positive correlation between CXCL12 signaling and Slug activity, thus corroborating the role of these two proteins in bone cellular context and suggesting a new potential target for bone tissue repair and regeneration.


Assuntos
Quimiocina CXCL12/metabolismo , Osteoblastos/fisiologia , Fatores de Transcrição/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Imunoprecipitação da Cromatina , Inativação Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Regiões Promotoras Genéticas , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
13.
Eur J Med Res ; 27(1): 57, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462544

RESUMO

BACKGROUND: Progressive pseudorheumatoid dysplasia (PPRD) is a rare autosomal recessive non-inflammatory skeletal disease with childhood onset and is characterized by a progressive chondropathy in multiple joints, and skeletal abnormalities. To date, the etiopathological relationship between biological modification occurring in PPRD and genetic mutation remains an open issue, partially due to the limited availability of biological samples obtained from PPRD patients for experimental studies. CASE PRESENTATION: We describe the clinical features of a PPRD patient and experimental results obtained from the biological characterization of PPRD mesenchymal stromal cells (MSCs) and osteoblasts (OBs) compared to normal cell populations. Phenotypic profile modifications were found in PPRD compared to normal subjects, essentially ascribed to decreased expression of CD146, osteocalcin (OC) and bone sialoprotein in PPRD MSCs and enhanced CD146, OC and collagen type I expression in PPRD OBs. Gene expression of Dickkopf-1, a master inhibitor of WNT signaling, was remarkably increased in PPRD MSCs compared to normal expression range, whereas PPRD OBs essentially exhibited higher OC gene expression levels. PPRD MSCs failed to efficiently differentiate into mature OBs, so showing a greatly impaired osteogenic potential. CONCLUSIONS: Since all regenerative processes require stem cell reservoirs, compromised functionality of MSCs may lead to an imbalance in bone homeostasis, suggesting a potential role of MSCs in the pathological mechanisms of PPRD caused by WNT1-inducible signaling pathway protein-3 (WISP3) mutations. In consideration of the lack of compounds with proven efficacy in such a rare disease, these data might contribute to better identify new specific and effective therapeutic approaches.


Assuntos
Artropatias , Células-Tronco Mesenquimais , Antígeno CD146 , Diferenciação Celular/genética , Criança , Humanos , Artropatias/congênito , Artropatias/fisiopatologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/genética
14.
Macromol Biosci ; 22(10): e2200096, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817025

RESUMO

A stable adhesion to the cartilage is a crucial requisite for hydrogels used for cartilage regeneration. Indeed, a weak interface between the tissue and the implanted material may produce a premature detachment and thus the failure of the regeneration processes. Fibrin glue, cellulose nanofibers and catecholamines have been proposed in the state-of-the-art as primers to improve the adhesion. However, no studies focused on a systematic comparison of their performance. This work aims to evaluate the adhesion strength between ex vivo cartilage specimens and polysaccharide hydrogels (gellan gum and methacrylated gellan gum), by applying the mentioned primers as intermediate layer. Results show that the fibrin glue and the cellulose nanofibers improve the adhesion strength, while catecholamines do not guarantee reaching a clinically acceptable value. Stem cells embedded in gellan gum hydrogels reduce the adhesion strength when fibrin glue is used as a primer, being anyhow still sufficient for in vivo applications.


Assuntos
Adesivo Tecidual de Fibrina , Hidrogéis , Cartilagem , Catecolaminas , Celulose , Hidrogéis/farmacologia , Polissacarídeos Bacterianos , Engenharia Tecidual/métodos
15.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552733

RESUMO

This systematic review is focused on the main characteristics of the hydrogels used for embedding the mesenchymal stromal cells (MSCs) in in vitro/ex vivo studies, in vivo OA models and clinical trials for favoring cartilage regeneration in osteoarthritis (OA). PubMED and Embase databases were used to select the papers that were submitted to a public reference manager Rayyan Systematic Review Screening Software. A total of 42 studies were considered eligible: 25 articles concerned in vitro studies, 2 in vitro and ex vivo ones, 5 in vitro and in vivo ones, 8 in vivo ones and 2 clinical trials. Some in vitro studies evidenced a rheological characterization of the hydrogels and description of the crosslinking methods. Only 37.5% of the studies considered at the same time chondrogenic, fibrotic and hypertrophic markers. Ex vivo studies focused on hydrogel adhesion properties and the modification of MSC-laden hydrogels subjected to compression tests. In vivo studies evidenced the effect of cell-laden hydrogels in OA animal models or defined the chondrogenic potentiality of the cells in subcutaneous implantation models. Clinical studies confirmed the positive impact of these treatments on patients with OA. To speed the translation to the clinical use of cell-laden hydrogels, further studies on hydrogel characteristics, injection modalities, chemo-attractant properties and adhesion strength are needed.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Animais , Hidrogéis/farmacologia , Cartilagem , Osteoartrite/terapia , Modelos Animais
16.
Gels ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547290

RESUMO

Autophagy is a cellular process that contributes to the maintenance of cell homeostasis through the activation of a specific path, by providing the necessary factors in stressful and physiological situations. Autophagy plays a specific role in chondrocyte differentiation; therefore, we aimed to analyze this process in adipose-derived mesenchymal stromal cells (ASCs) laden in three-dimensional (3D) hydrogel. We analyzed chondrogenic and autophagic markers using molecular biology, immunohistochemistry, and electron microscopy. We demonstrated that ASCs embedded in 3D hydrogel showed an increase expression of typical autophagic markers Beclin 1, LC3, and p62, associated with clear evidence of autophagic vacuoles in the cytoplasm. During ASCs chondrogenic differentiation, we showed that autophagic markers declined their expression and autophagic vesicles were rare, while typical chondrogenic markers collagen type 2, and aggrecan were significantly increased. In line with developmental animal models of cartilage, our data showed that in a 3D hydrogel, ASCs increased their autophagic features. This path is the fundamental prerequisite for the initial phase of differentiation that contributes to fueling the cells with energy and factors necessary for chondrogenic differentiation.

17.
Gels ; 8(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735726

RESUMO

Articular cartilage is known to have limited intrinsic self-healing capacity when a defect or a degeneration process occurs. Hydrogels represent promising biomaterials for cell encapsulation and injection in cartilage defects by creating an environment that mimics the cartilage extracellular matrix. The aim of this study is the analysis of two different concentrations (1:1 and 1:2) of VitroGel® (VG) hydrogels without (VG-3D) and with arginine-glycine-aspartic acid (RGD) motifs, (VG-RGD), verifying their ability to support chondrogenic differentiation of encapsulated human adipose mesenchymal stromal cells (hASCs). We analyzed the hydrogel properties in terms of rheometric measurements, cell viability, cytotoxicity, and the expression of chondrogenic markers using gene expression, histology, and immunohistochemical tests. We highlighted a shear-thinning behavior of both hydrogels, which showed good injectability. We demonstrated a good morphology and high viability of hASCs in both hydrogels. VG-RGD 1:2 hydrogels were the most effective, both at the gene and protein levels, to support the expression of the typical chondrogenic markers, including collagen type 2, SOX9, aggrecan, glycosaminoglycan, and cartilage oligomeric matrix protein and to decrease the proliferation marker MKI67 and the fibrotic marker collagen type 1. This study demonstrated that both hydrogels, at different concentrations, and the presence of RGD motifs, significantly contributed to the chondrogenic commitment of the laden hASCs.

18.
J Cell Physiol ; 226(4): 982-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20857429

RESUMO

T cells are critical regulators of osteoclast differentiation and function in bone, but whether osteoclasts can, in turn, regulate T cell homing, and response to stimuli is unclear. To investigate whether osteoclasts are immune competent cells, the expression of HLA Class II and costimulatory receptors was evaluated by RT-PCR and immunohistochemistry by comparing osteoclast precursors and mature osteoclasts. T-cell-attracting chemokines were measured in the supernatants of confluent cultures of osteoclasts and compared with mesenchymal stromal cells and osteoblasts. T cell proliferation, cytokine production, and apoptosis were assayed in co-cultures with osteoclasts in the presence or absence of mitogenic stimuli. To define the mechanism of action of osteoclasts, cytokine-blocking experiments were performed. Our findings revealed that mature osteoclasts constitutively expressed Class II HLA in the membrane and upregulate the expression of CD40 and CD80 during differentiation. Osteoclasts secreted high levels of most T cell chemoattractants and effectively retained T cells in adhesion assays. Moreover, the osteoclasts potently blunted T cell response to PHA and CD3/CD28 stimulation, thus inhibiting proliferation, suppressing T cell TNFα and IFNγ production and decreasing T cell apoptosis by a mostly cell-contact independent mechanism. In conclusion, osteoclasts are immune-competent cells which can retain T cells and suppress in vitro T cell response to proliferative stimuli.


Assuntos
Osteoclastos/citologia , Linfócitos T/citologia , Antígenos/imunologia , Apoptose/imunologia , Biomarcadores , Diferenciação Celular/imunologia , Proliferação de Células , Fragmentação do DNA , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/biossíntese , Osteoclastos/metabolismo , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/biossíntese
19.
J Cell Physiol ; 226(10): 2675-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21302278

RESUMO

Human bone cells used for in vitro studies are mainly derived from bone marrow (BM) or trabecular bone (TB). There are no specific markers or procedures for isolation and growth of these cells. To validate the potentiality of these cells, we isolated human mesenchymal stromal cells (MSCs) and osteoblasts (OBs) from the tibial plateau of the same subject, grown in two different media (α-MEM and DMEM/F12) and analyzed for cell growth, proliferation, phenotype and osteogenic potential. We found that OBs grew well in both media tested, but MSCs were able to grow only in α-MEM medium. OBs in DMEM/F12 showed reduced proliferation capability and expressed a low level of alkaline phosphatase (AP), RUNX-2, osteocalcin (OC), bone sialoprotein (BSP), collagen type I (Col.I) compared with OBs in α-MEM but high level of collagen type XV (Col.XV). Compared with MSCs in α-MEM, OBs have an increased ability to proliferate and express more OC and BSP at molecular level but less AP, RUNX-2 and Col.I than MSCs. Time-course experiments to analyze the osteogenic potential of these cells showed that OBs were more efficient than MSCs. However, these cells obtained from tibial plateau showed a different trend of AP, OC and Col.I osteogenic markers compared to control MSCs from the iliac crest. This study shows that bone-adherent OBs grown in α-MEM medium are more efficient for osteogenic differentiation than BM MSCs and contribute to defining their phenotypic and functional characteristics, so providing a rationale for their use in bone tissue engineering or therapeutic purposes.


Assuntos
Células da Medula Óssea/citologia , Osteogênese/fisiologia , Células-Tronco/citologia , Tíbia/citologia , Idoso , Células da Medula Óssea/fisiologia , Separação Celular/métodos , Células Cultivadas , Humanos , Pessoa de Meia-Idade , Osteoartrite do Joelho/cirurgia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/genética , Células-Tronco/fisiologia , Células Estromais/citologia , Células Estromais/fisiologia , Coleta de Tecidos e Órgãos/métodos
20.
Biology (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202598

RESUMO

Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA