Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anal Chem ; 85(15): 7271-8, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23815678

RESUMO

Described is the construction of a large array of releasable microstructures (micropallets) along with screening and isolation protocols for sorting rare, approximately 1 in 10,000, cancer stem cells (CSCs) from a heterogeneous cell population. A 10.1 × 7.1 cm array of micropallets (50 × 50 × 75 µm structures and 25 µm micropallet gap) was fabricated on a large glass substrate, providing an array of approximately 1.3 million releasable microstructures. Image analysis algorithms were developed to permit array screening for identification of fluorescently labeled cells in less than 15 min using an epifluorescent wide-field microscope with a computer controlled translational stage. Device operation was tested by culturing HeLa cells transfected with green fluorescent protein (GFP) admixed with wild-type HeLa cells at ratios of 1:10(4) to 1:10(6) on the array followed by screening to identify flourescent cells. Micropallets containing cells of interest were then selectively released by a focused laser pulse and collected on a numbered poly(dimethylsiloxane) (PDMS) substrate with high viability. A direct comparison of this technology with fluorescence-activated cell sorting (FACS) demonstrated that micropallet arrays offered enhanced post sorting purity (100%), yield (100%), and viability (94-100%) for rare cell isolation. As a demonstration of the technology's value, pancreatic tumor cells from Panc-1 cell lines and patient-derived xenografts were screened for the presence of CD24, CD44, and CD326: surface markers of pancreatic CSCs. Following cell isolation and culture, 63 ± 23% of the isolated Panc-1 cells and 35% of sorted human xenograft cells formed tumor spheroids retaining high expression levels of CD24, CD44, and CD326. The ability to isolate rare cells from relatively small sample sizes will facilitate our understanding of cell biology and the development of new therapeutic strategies.


Assuntos
Carcinoma Ductal Pancreático/patologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Transformação Celular Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Processamento de Imagem Assistida por Computador , Camundongos
2.
Anal Chem ; 84(24): 10614-20, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23153031

RESUMO

A microfabricated platform was developed for highly parallel and efficient colony picking, splitting, and clone identification. A pallet array provided patterned cell colonies which mated to a second printing array composed of bridging microstructures formed by a supporting base and attached post. The posts enabled mammalian cells from colonies initially cultured on the pallet array to migrate to corresponding sites on the printing array. Separation of the arrays simultaneously split the colonies, creating a patterned replica. Optimization of array elements provided transfer efficiencies greater than 90% using bridging posts of 30 µm diameter and 100 µm length and total colony numbers of 3000. Studies using five mammalian cell lines demonstrated that a variety of adherent cell types could be cultured and effectively split with printing efficiencies of 78-92%. To demonstrate the technique's utility, clonal cell lines with siRNA knockdown of Coronin 1B were generated using the arrays and compared to a traditional FACS/Western Blotting-based approach. Identification of target clones required a destructive assay to identify cells with an absence of Coronin 1B brought about by the successful infection of interfering shRNA construct. By virtue of miniaturization and its parallel format, the platform enabled the identification and generation of 12 target clones from a starting sample of only 3900 cells and required only 5 man hours over 11 days. In contrast, the traditional method required 500,000 cells and generated only 5 target clones with 34 man hours expended over 47 days. These data support the considerable reduction in time, manpower, and reagents using the miniaturized platform for clonal selection by destructive assay versus conventional approaches.


Assuntos
Separação Celular/métodos , Clonagem Molecular/métodos , Microtecnologia/métodos , Animais , Células Cultivadas , Células Clonais/citologia , Células HeLa , Humanos , Camundongos , Células NIH 3T3
5.
Lab Chip ; 17(20): 3388-3400, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28820204

RESUMO

Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Biologia Sintética , Células Artificiais , DNA , Desenho de Equipamento , Nanopartículas , Nanotecnologia
6.
ACS Synth Biol ; 5(5): 426-33, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26830031

RESUMO

We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.


Assuntos
Engenharia Genética/métodos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , DNA/genética , Escherichia coli/genética , Plasmídeos , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
7.
Lab Chip ; 15(1): 225-36, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25354549

RESUMO

We have developed a new hybrid droplet-to-digital microfluidic platform (D2D) that integrates droplet-in-channel microfluidics with digital microfluidics (DMF) for performing multi-step assays. This D2D platform combines the strengths of the two formats-droplets-in-channel for facile generation of droplets containing single cells, and DMF for on-demand manipulation of droplets including control of different droplet volumes (pL-µL), creation of a dilution series of ionic liquid (IL), and parallel single cell culturing and analysis for IL toxicity screening. This D2D device also allows for automated analysis that includes a feedback-controlled system for merging and splitting of droplets to add reagents, an integrated Peltier element for parallel cell culture at optimum temperature, and an impedance sensing mechanism to control the flow rate for droplet generation and preventing droplet evaporation. Droplet-in-channel is well-suited for encapsulation of single cells as it allows the careful manipulation of flow rates of aqueous phase containing cells and oil to optimize encapsulation. Once single cell containing droplets are generated, they are transferred to a DMF chip via a capillary where they are merged with droplets containing IL and cultured at 30 °C. The DMF chip, in addition to permitting cell culture and reagent (ionic liquid/salt) addition, also allows recovery of individual droplets for off-chip analysis such as further culturing and measurement of ethanol production. The D2D chip was used to evaluate the effect of IL/salt type (four types: NaOAc, NaCl, [C2mim] [OAc], [C2mim] [Cl]) and concentration (four concentrations: 0, 37.5, 75, 150 mM) on the growth kinetics and ethanol production of yeast and as expected, increasing IL concentration led to lower biomass and ethanol production. Specifically, [C2mim] [OAc] had inhibitory effects on yeast growth at concentrations 75 and 150 mM and significantly reduced their ethanol production compared to cells grown in other ILs/salts. The growth curve trends obtained by D2D matched conventional yeast culturing in microtiter wells, validating the D2D platform. We believe that our approach represents a generic platform for multi-step biochemical assays such as drug screening, digital PCR, enzyme assays, immunoassays and cell-based assays.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Análise Serial de Tecidos/instrumentação , Desenho de Equipamento , Etanol/análise , Etanol/metabolismo , Líquidos Iônicos/química , Técnicas Analíticas Microfluídicas/métodos , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Análise Serial de Tecidos/métodos
8.
Biosens Bioelectron ; 54: 476-83, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24316450

RESUMO

Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization.


Assuntos
Adenocarcinoma/sangue , Técnicas Biossensoriais/instrumentação , Separação Celular/instrumentação , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/sangue , Análise Serial de Tecidos/instrumentação , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Desenho de Equipamento , Feminino , Humanos , Camundongos , Neoplasias Pancreáticas/patologia
9.
Biomicrofluidics ; 5(3): 32002-3200212, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22007266

RESUMO

A new strategy for magnetically manipulating and isolating adherent cells with extremely high post-collection purity and viability is reported. Micromolded magnetic elements (termed microrafts) were fabricated in an array format and used as culture surfaces and carriers for living, adherent cells. A poly(styrene-co-acrylic acid) polymer containing well dispersed magnetic nanoparticles was developed for creating the microstructures by molding. Nanoparticles of γFe(2)O(3) at concentrations up to 1% wt.∕wt. could be used to fabricate microrafts that were optically transparent, highly magnetic, biocompatible, and minimally fluorescent. To prevent cellular uptake of nanoparticles from the magnetic polymer, a poly(styrene-co-acrylic acid) layer lacking γFe(2)O(3) nanoparticles was placed over the initial magnetic microraft layer to prevent cellular uptake of the γFe(2)O(3) during culture. The microraft surface geometry and physical properties were altered by varying the polymer concentration or layering different polymers during fabrication. Cells plated on the magnetic microrafts were visualized using standard imaging techniques including brightfield, epifluorescence, and confocal microscopy. Magnetic microrafts possessing cells of interest were dislodged from the array and efficiently collected with an external magnet. To demonstrate the feasibility of cell isolation using the magnetic microrafts, a mixed population of wild-type cells and cells stably transfected with a fluorescent protein was plated onto an array. Microrafts possessing single, fluorescent cells were released from the array and magnetically collected. A post-sorting single-cell cloning rate of 92% and a purity of 100% were attained.

10.
Biomaterials ; 31(33): 8810-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719380

RESUMO

Microfabricated devices possessing magnetic properties are of great utility in bioanalytical microdevices due to their controlled manipulation with external magnets. Current methods for creating magnetic microdevices yield a low-transparency material preventing light microscopy-based inspection of biological specimens on the structures. Uniformly transparent magnetic photoresists were developed for microdevices that require high transparency as well as consistent magnetism across the structure. Colloidal formation of 10 nm maghemite particles was minimized during addition to the negative photoresists SU-8 and 1002F through organic capping of the nanoparticles and utilization of solvent-based dispersion techniques. Photoresists with maghemite concentrations of 0.01-1% had a high transparency due to the even dispersal of maghemite nanoparticles within the polymer as observed with transmission electron microscopy (TEM). These magnetic photoresists were used to fabricate microstructures with aspect ratios up to 4:1 and a resolution of 3 µm. Various cell lines showed excellent adhesion and viability on the magnetic photoresists. An inspection of cells cultured on the magnetic photoresists with TEM showed cellular uptake of magnetic nanoparticles leeched from the photoresists. Cellular contamination by magnetic nanoparticles was eliminated by capping the magnetic photoresist surface with native 1002F photoresist or by removing the top layer of the magnetic photoresist through surface roughening. The utility of these magnetic photoresists was demonstrated by sorting single cells (HeLa, RBL and 3T3 cells) cultured on arrays of releasable magnetic micropallets. 100% of magnetic micropallets with attached cells were collected following release from the array. 85-92% of the collected cells expanded into colonies. The polymeric magnetic materials should find wide use in the fabrication of microstructures for bioanalytical technologies.


Assuntos
Tecnologia Biomédica/instrumentação , Magnetismo/instrumentação , Fotoquímica/instrumentação , Absorção , Animais , Linhagem Celular , Proliferação de Células , Separação Celular , Colorimetria , Compostos Férricos/química , Humanos , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA