Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37817378

RESUMO

Li-O2 batteries (LOB) performance degradation ultimately occurs through the accumulation of discharge products and irreversible clogging of the porous electrode during the cycling. Electrode binder degradation in the presence of reduced oxygen species can result in additional coating of the conductive surface, exacerbating capacity fading. Herein, a facile method to fabricate free-standing is established, binder-free electrodes for LOBs in which multi-wall carbon nanotubes form cross-linked networks exhibiting high porosity, conductivity, and flexibility. These electrodes demonstrate high reproducibility upon cycling in LOBs. After cell death, efficient and inexpensive methods to wash away the accumulated discharge products are demonstrated, as reconditioning method. The second life usage of these electrodes is validated, without noticeable loss of performance. These findings aim to assist in the development of greener high energy density batteries while reducing manufacturing and recycling costs.

2.
Anal Chem ; 83(2): 478-85, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21155595

RESUMO

To allow electric vehicles to be powered by Li-ion batteries, scientists must understand further their aging processes in view to extend their cycle life and safety. For this purpose, we focused on the development of analytical techniques aiming at identifying organic species resulting from the degradation of carbonate-based electrolytes (EC-DMC/LiPF(6)) at low potential. As ESI-HRMS provided insightful information to the mechanism and chronological formation of ethylene oxide oligomers, we implemented "gas" GC/MS experiments to explore the lower mass range corresponding to highly volatile compounds. With the help of chemical simulation tests, we were able to discriminate their formation pathways (thermal and/or electrochemical) and found that most of the degradation compounds originate from the electrochemically driven linear alkyl carbonate reduction upon cycling and to a lesser extent from a two-step EC reduction. Deduced from these results, we propose an overall electrolyte degradation scheme spanning the entire mass range and the chemical or electrochemical type of processes.

3.
ACS Appl Mater Interfaces ; 13(48): 57505-57513, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812611

RESUMO

To develop K-ion batteries, the potassium metal reactivity in a half-cells must be understood. Here, it is shown first that the K metal leads to the migration of the electrode degradation species to the working electrode surface so that half-cells' solid electrolyte interphase (SEI) studies cannot be trusted. Then, the K metal reactivity was studied by combining gas chromatography (GC)-mass spectrometry, GC/Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis after storage in ethylene carbonate/diethylene carbonate (EC/DEC) wo/w 0.8 M KPF6 or KFSI. A comparison with Li stored in EC/DEC wo/w 0.8 M LiPF6 was also performed. Overall, full electrolyte degradation pathways were obtained. The results showed a similar alkali reactivity when stored in EC/DEC with the formation of a CH3CH2OCO2M-rich SEI. For a MPF6-based electrolyte, the reactivity was driven by the PF6- anion (i) forming mostly LiF (Li metal) or (ii) catalyzing the solvent degradation into (CH2CH2OCOOK)2 and CH3CH2OCOOK as main SEI products with additional C2H6 release (K metal). This highlights the higher reactivity of the K system. With KFSI, the reactivity was driven by the FSI- anion degradation, leading to an inorganic-rich SEI. These results thus explain the better electrochemical performance often reported in half-cells with KFSI compared to that with KPF6. Finally, the understanding of these chemically driven electrolyte degradation mechanisms should help researchers to design robust carbonate-based electrolyte formulations for KIBs.

4.
J Am Chem Soc ; 132(9): 3055-62, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20155905

RESUMO

Compounds like LiF, Li(2)O, and Li(2)O(2) have considerable importance in batteries; the first two are ubiquitous in the protective SEI at the negative electrode, or the result of conversion reactions with fluorides and oxides. The latter, Li(2)O(2,) forms from oxygen reduction in the much vaunted Li/air batteries. Mastering their solubility in Li-based electrolytes is viewed as essential for further progress in battery safety, lifetime, or capacity. Aprotic solvents cannot provide the H-bonds necessary to their dissolution, and simple practical solutions have yet to materialize. Here we disclose a novel and large family of boron esters of general formula Y-C((CH(2)O)(Z(1)O)(Z(2)O))B whose Lewis acidity stems from geometrical constraint and can be tuned via electron affinity either by Y = CH(3) --> Y = NO(2) or Z(1,2) = CH(2) --> Z(1,2) = CO so as to partially or fully dissolve the above compounds both in battery solvent EC/DMC and in DMF. The extreme simplicity of synthesis and variability of these boron-based anion carriers, where the exchange rate is fast, are not only a valuable addition to coordination science but also a step forward to improve present battery systems.


Assuntos
Compostos de Boro/química , Fontes de Energia Elétrica , Ésteres/química , Ânions/química , Compostos de Boro/síntese química , Eletroquímica , Ésteres/síntese química
5.
Sci Rep ; 9(1): 135, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644414

RESUMO

Combining energy conversion and storage at a device and/or at a molecular level constitutes a new research field raising interest. This work aims at investigating how prolonged standard light exposure (A.M. 1.5G) interacts with conventional batteries electrolyte, commonly used in the photo-assisted or photo-rechargeable batteries, based on 1 mol.L-1 LiPF6 EC/DMC electrolyte. We demonstrate the intrinsic chemical robustness of this class of electrolyte in absence of any photo-electrodes. However, based on different steady-state and time-resolved spectroscopic techniques, it is for the first time highlighted that the solvation of lithium and hexafluorophosphate ions by the carbonates are modified by light exposure leading to absorbance and ionic conductivity modifications without detrimental effects onto the electrochemical properties.

6.
ACS Appl Mater Interfaces ; 10(40): 34116-34122, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30230309

RESUMO

Developing potassium-ion batteries remains a challenge so far due to the lack of efficient electrolytes. Moreover, the high reactivity of K metal and the use of half-cells may greatly alter both the electrochemical performance and the solid electrolyte interphase formation. Here, it is shown that in K metal/Sb half-cells, Coulombic efficiency improvement is achieved by the addition of fluoroethylene carbonate + vinylene carbonate to propylene carbonate (PC), the replacement of PC by ethylene carbonate/diethyl carbonate, and the replacement of KPF6 by potassium bis(fluorosulfonyl)imide. Surprisingly, however, storage of cells containing K metal leads to the coloration of K metal, separators, and Sb electrodes, whereas no change occurs for cells prepared without K metal. These results demonstrate that for all electrolytes, the high electrolyte reactivity with K metal also influences the Sb/electrolyte interface via a cross-talk mechanism. This observation is supported by gas chromatography/mass spectrometry analysis of electrolytes and X-ray photoelectron spectroscopy analysis of Sb electrodes. In summary, these results indicate that the search for efficient electrolytes for potassium-ion batteries must be carried out in full cells if one wants to obtain meaningful correlations between electrochemical performance and electrode/electrolyte interfacial properties. Overall, the results presented here are also likely to benefit the development of other emerging Na- and Mg-ion cell chemistries.

7.
ChemSusChem ; 9(5): 462-71, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26834069

RESUMO

We report a systematic investigation of Na-based electrolytes that comprise various NaX [X=hexafluorophosphate (PF6 ), perchlorate (ClO4 ), bis(trifluoromethanesulfonyl)imide (TFSI), fluorosulfonyl-(trifluoromethanesulfonyl)imide (FTFSI), and bis(fluorosulfonyl)imide (FSI)] salts and solvent mixtures [ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/diethyl carbonate (DEC), and EC/propylene carbonate (PC)] with respect to the Al current collector stability, formation of soluble degradation compounds, reactivity towards sodiated hard carbon (Nax -HC), and solid-electrolyte interphase (SEI) layer formation. Cyclic voltammetry demonstrates that the stability of Al is highly influenced by the nature of the anions, solvents, and additives. GC-MS analysis reveals that the formation of SEI telltales depends on the nature of the linear alkyl carbonates and the battery chemistry (Li(+) vs. Na(+) ). FTIR spectroscopy shows that double alkyl carbonates are the main components of the SEI layer on Nax -HC. In the presence of Na salts, EC/DMC and EC/DEC presented a higher reactivity towards Nax -HC than EC/PC. For a fixed solvent mixture, the onset temperature follows the sequence NaClO4

Assuntos
Eletrólitos/química , Sódio/química , Varredura Diferencial de Calorimetria , Cromatografia Gasosa-Espectrometria de Massas , Íons , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
8.
Inorg Chem ; 42(6): 2056-60, 2003 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-12639141

RESUMO

The synthesis of a ligand containing as an electroactive core a tetrathiafulvalene moiety, 3-[3-(diphenylphosphino)propylthio]-3',4,4'-trimethyl-tetrathiafulvalene, is reported. Its versatile ability to act as a bidentate or a monodentate ligand, as demonstrated by the metal carbonyl complexes obtained, is described. The novel cis-Mo(CO)(4)(P-TTF)(2) 4 and cis-W(CO)(4)(P,S-TTF) 6 complexes have been characterized by X-ray diffraction analyses and cyclic voltammetry measurements. Within complex 4, no significant influence of the two electroactive ligands on the molybdenum center was detected, whereas, in complex 6, a weak influence of the TTF redox-active core can be observed on the redox behavior of the metal center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA