Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Org Biomol Chem ; 17(10): 2734-2746, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30778435

RESUMO

Allosteric regulators of clinically important enzymes are gaining popularity as alternatives to competitive inhibitors. This is also the case for the proteasome, a major intracellular protease and a target of anti-cancer drugs. All clinically used proteasome inhibitors bind to the active sites in catalytic chamber and display a competitive mechanism. Unfortunately, inevitable resistance associated with this type of inhibition drives the search for non-competitive agents. The multisubunit and multicatalytic "proteolytic machine" such as the proteasome is occasionally found to be affected by agents with other primary targets. For example the immunosuppressive agent rapamycin has been shown to allosterically inhibit the proteasome albeit at levels far higher than its mTOR related efficacy. As part of an ongoing program to search for novel proteasome-targeting pharmacophores, we identified the binding domain of rapamycin as required for proteasome inhibition even without the macrocyclic context of the parent compound. By subsequent structure-activity relationship studies, we generated a pipecolic ester derivative compound 3 representing a new class of proteasome inhibitors. Compound 3 affects the core proteasome activities and proliferation of cancer cells with low micromolar/high nanomolar efficacy. Molecular modeling, atomic force microscopy imaging and biochemical data suggest that compound 3 binds into one of intersubunit pockets in the proteasomal α ring and destabilizes the α face and the gate. The α face is used as a docking area for proteasome-regulating protein modules and the gate is critical for controlling access to the catalytic chamber. Thus, the pipecolic ester template elicits a new and attractive mechanism for proteasome inhibition distinct from classical competitive drugs.


Assuntos
Ésteres/química , Ácidos Pipecólicos/química , Ácidos Pipecólicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Domínio Catalítico , Desenho de Fármacos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ácidos Pipecólicos/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo
2.
Prostate ; 74(13): 1297-307, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25065737

RESUMO

BACKGROUND: Emerging evidence shows that nanomechanical phenotypes of circulating tumor cells (CTC) could become potential biomarkers for metastatic castration resistant prostate cancer (mCRPC). METHODS: To determine the nanomechanical phenotypes of CTCs we applied atomic force microscopy (AFM) employing the PeakForce quantitative nanomechanical (QNM) imaging. We assessed biophysical parameters (elasticity, deformation, and adhesion) of 130 CTCs isolated from blood samples from five castration sensitive (CS) and 12 castration resistant prostate cancer (CRPCa) patients. RESULTS: We found that CTCs from CRPCa patients are three times softer, three times more deformable, and seven times more adhesive than counterparts from CSPCa patients. Both nonsupervised hierarchical clustering and principle component analysis show that three combined nanomechanical parameters could constitute a valuable set to distinguish between CSPCa and CRPCa. CONCLUSIONS: [corrected] Our study indicates that nanomechanical phenotypes of CTCs may serve as novel and effective biomarkers for mCRPC.


Assuntos
Biomarcadores Tumorais/sangue , Células Neoplásicas Circulantes/patologia , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Neoplasias da Próstata/diagnóstico , Contagem de Células , Humanos , Masculino , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Cell Rep ; 43(8): 114527, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39046873

RESUMO

The paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase ß-catenin accumulation for WNT signaling activation, this epigenetic repression causes ß-catenin release from transmembrane integrins. Furthermore, PAI-1 elicits the disengagement of TIMP2 and SPARC from integrin-ß1 on the cell surface, lifting an integrin-ß1-ECM signaling constraint. The heightened interaction of integrin-ß1 with type 1 collagen (COL1) remodels extracellular fibrillar structures in the ECM. Consequently, the enhanced nanomechanical stiffness of this microenvironment is conducive to EEC motility and neoplastic transformation. The formation of extensively branched COL1 fibrils is also observed in endometrial tumors of patients with obesity. The findings highlight PAI-1 as a contributor to enhanced integrin-COL1 engagement and extensive ECM remodeling during obesity-associated neoplastic development.


Assuntos
Matriz Extracelular , Integrina beta1 , Obesidade , Inibidor 1 de Ativador de Plasminogênio , beta Catenina , Humanos , Obesidade/metabolismo , Obesidade/patologia , Feminino , Inibidor 1 de Ativador de Plasminogênio/metabolismo , beta Catenina/metabolismo , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Osteonectina/metabolismo , Osteonectina/genética , Colágeno/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Colágeno Tipo I/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Peptídeos e Proteínas de Sinalização Intercelular
4.
Lung Cancer ; 190: 107533, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38520909

RESUMO

Lung cancer is the leading cause of global cancer-related mortality resulting in âˆ¼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Medicina de Precisão/métodos , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pulmão , Organoides/patologia , Microambiente Tumoral
5.
Cancer Lett ; 597: 217063, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925361

RESUMO

In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.


Assuntos
NF-kappa B , Neoplasias da Próstata , Tolerância a Radiação , Proteína Sequestossoma-1 , Transdução de Sinais , Masculino , Animais , Humanos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética
6.
Prostate ; 73(8): 813-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23280481

RESUMO

BACKGROUND: Prostate tumors shed circulating tumor cells (CTCs) into the blood stream. Increased evidence shows that CTCs are often present in metastatic prostate cancer and can be alternative sources for disease profiling and prognostication. Here we postulate that CTCs expressing genes related to epithelial-mesenchymal transition (EMT) are strong predictors of metastatic prostate cancer. METHODS: A microfiltration system was used to trap CTCs from peripheral blood based on size selection of large epithelial-like cells without CD45 leukocyte marker. These cells individually retrieved with a micromanipulator device were assessed for cell membrane physical properties using atomic force microscopy. Additionally, 38 CTCs from eight prostate cancer patients were used to determine expression profiles of 84 EMT-related and reference genes using a microfluidics-based PCR system. RESULTS: Increased cell elasticity and membrane smoothness were found in CTCs compared to noncancerous cells, highlighting their potential invasiveness and mobility in the peripheral circulation. Despite heterogeneous expression patterns of individual CTCs, genes that promote mesenchymal transitioning into a more malignant state, including IGF1, IGF2, EGFR, FOXP3, and TGFB3, were commonly observed in these cells. An additional subset of EMT-related genes (e.g., PTPRN2, ALDH1, ESR2, and WNT5A) were expressed in CTCs of castration-resistant cancer, but less frequently in castration-sensitive cancer. CONCLUSIONS: The study suggests that an incremental expression of EMT-related genes in CTCs is associated with metastatic castration-resistant cancer. Although CTCs represent a group of highly heterogeneous cells, their unique EMT-related gene signatures provide a new opportunity for personalized treatments with targeted inhibitors in advanced prostate cancer patients.


Assuntos
Transição Epitelial-Mesenquimal/genética , Neoplasias Hormônio-Dependentes/metabolismo , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , DNA de Neoplasias/química , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Técnicas Analíticas Microfluídicas , Microscopia de Força Atômica , Neoplasias Hormônio-Dependentes/sangue , Neoplasias Hormônio-Dependentes/genética , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única/métodos
7.
Biomolecules ; 13(3)2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36979414

RESUMO

The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.


Assuntos
Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Modelos Moleculares , Proteólise
8.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
9.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659081

RESUMO

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Células Endoteliais , Transdução de Sinais , Diferenciação Celular , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Cancer Res ; 81(15): 4110-4123, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34045187

RESUMO

Aggressive tumors of epithelial origin shed cells that intravasate and become circulating tumor cells (CTC). The CTCs that are able to survive the stresses encountered in the bloodstream can then seed metastases. We demonstrated previously that CTCs isolated from the blood of prostate cancer patients display specific nanomechanical phenotypes characteristic of cell endurance and invasiveness and patient sensitivity to androgen deprivation therapy. Here we report that patient-isolated CTCs are nanomechanically distinct from cells randomly shed from the tumor, with high adhesion as the most distinguishing biophysical marker. CTCs uniquely coisolated with macrophage-like cells bearing the markers of tumor-associated macrophages (TAM). The presence of these immune cells was indicative of a survival-promoting phenotype of "mechanical fitness" in CTCs based on high softness and high adhesion as determined by atomic force microscopy. Correlations between enumeration of macrophages and mechanical fitness of CTCs were strong in patients before the start of hormonal therapy. Single-cell proteomic analysis and nanomechanical phenotyping of tumor cell-macrophage cocultures revealed that macrophages promoted epithelial-mesenchymal plasticity in prostate cancer cells, manifesting in their mechanical fitness. The resulting softness and adhesiveness of the mechanically fit CTCs confer resistance to shear stress and enable protective cell clustering. These findings suggest that selected tumor cells are coached by TAMs and accompanied by them to acquire intermediate epithelial/mesenchymal status, thereby facilitating survival during the critical early stage leading to metastasis. SIGNIFICANCE: The interaction between macrophages and circulating tumor cells increases the capacity of tumor cells to initiate metastasis and may constitute a new set of blood-based targets for pharmacologic intervention.


Assuntos
Macrófagos/metabolismo , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Próstata/imunologia , Linhagem Celular Tumoral , Humanos , Masculino , Fenótipo
11.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894239

RESUMO

SULT2B1b (SULT2B) is a prostate-expressed hydroxysteroid sulfotransferase, which may regulate intracrine androgen homeostasis by mediating 3ß-sulfation of dehydroepiandrosterone (DHEA), the precursor for 5α-dihydrotestosterone (DHT) biosynthesis. The aldo-keto reductase (AKR)1C3 regulates androgen receptor (AR) activity in castration-resistant prostate cancer (CRPC) by promoting tumor tissue androgen biosynthesis from adrenal DHEA and also by functioning as an AR-selective coactivator. Herein we report that SULT2B-depleted CRPC cells, arising from stable RNA interference or gene knockout (KO), are markedly upregulated for AKR1C3, activated for ERK1/2 survival signal, and induced for epithelial-to-mesenchymal (EMT)-like changes. EMT was evident from increased mesenchymal proteins and elevated EMT-inducing transcription factors SNAI1 and TWIST1 in immunoblot and single-cell mass cytometry analyses. SULT2B KO cells showed greater motility and invasion in vitro; growth escalation in xenograft study; and enhanced metastatic potential predicted on the basis of decreased cell stiffness and adhesion revealed from atomic force microscopy analysis. While AR and androgen levels were unchanged, AR activity was elevated, since PSA and FKBP5 mRNA induction by DHT-activated AR was several-fold higher in SULT2B-silenced cells. AKR1C3 silencing prevented ERK1/2 activation and SNAI1 induction in SULT2B-depleted cells. SULT2B was undetectable in nearly all CRPC metastases from 50 autopsy cases. Primary tumors showed variable and Gleason score (GS)-independent SULT2B levels. CRPC metastases lacking SULT2B expressed AKR1C3. Since AKR1C3 is frequently elevated in advanced prostate cancer, the inhibitory influence of SULT2B on AKR1C3 upregulation, ERK1/2 activation, EMT-like induction, and on cell motility and invasiveness may be clinically significant. Pathways regulating the inhibitory SULT2B-AKR1C3 axis may inform new avenue(s) for targeting SULT2B-deficient prostate cancer.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Carcinoma/enzimologia , Neoplasias da Próstata/enzimologia , Sulfotransferases/metabolismo , Animais , Transição Epitelial-Mesenquimal , Humanos , Masculino , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Receptores Androgênicos/metabolismo
12.
Cancer Res ; 80(7): 1551-1563, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31992541

RESUMO

Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at the single-cell level and is used to assess intertumor and intratumor heterogeneity. This approach may be used to investigate the variability of individual tumor responses to treatments. Herein, we stratified lung tumor subpopulations based on AXL signaling as a potential targeting strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGFß signaling and induced JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGFß, and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid epithelial-to-mesenchymal transition features in advanced-stage patients, suggesting greater potential for distant dissemination. Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that were linked to clinicopathologic features for each patient. Patient-derived organoids (PDO) obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK inhibitor) treatments, supporting the CyTOF findings. This study shows that single-cell proteomic profiling of treatment-naïve lung tumors, coupled with ex vivo testing of PDOs, identifies continuous AXL, TGFß, and JAK1-STAT3 signal activation in select tumors that may be targeted by combined AXL-JAK1 inhibition. SIGNIFICANCE: Single-cell proteomic profiling of clinical samples may facilitate the optimal selection of novel drug targets, interpretation of early-phase clinical trial data, and development of predictive biomarkers valuable for patient stratification.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Janus Quinase 1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Citometria de Fluxo/métodos , Humanos , Janus Quinase 1/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Nitrilas , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA-Seq , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
13.
Cancer Res ; 79(1): 196-208, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389702

RESUMO

Emerging evidence indicates that adipose stromal cells (ASC) are recruited to enhance cancer development. In this study, we examined the role these adipocyte progenitors play relating to intercellular communication in obesity-associated endometrial cancer. This is particularly relevant given that gap junctions have been implicated in tumor suppression. Examining the effects of ASCs on the transcriptome of endometrial epithelial cells (EEC) in an in vitro coculture system revealed transcriptional repression of GJA1 (encoding the gap junction protein Cx43) and other genes related to intercellular communication. This repression was recapitulated in an obesity mouse model of endometrial cancer. Furthermore, inhibition of plasminogen activator inhibitor 1 (PAI-1), which was the most abundant ASC adipokine, led to reversal of cellular distribution associated with the GJA1 repression profile, suggesting that PAI-1 may mediate actions of ASC on transcriptional regulation in EEC. In an endometrial cancer cohort (n = 141), DNA hypermethylation of GJA1 and related loci TJP2 and PRKCA was observed in primary endometrial endometrioid tumors and was associated with obesity. Pharmacologic reversal of DNA methylation enhanced gap-junction intercellular communication and cell-cell interactions in vitro. Restoring Cx43 expression in endometrial cancer cells reduced cellular migration; conversely, depletion of Cx43 increased cell migration in immortalized normal EEC. Our data suggest that persistent repression by ASC adipokines leads to promoter hypermethylation of GJA1 and related genes in the endometrium, triggering long-term silencing of these loci in endometrial tumors of obese patients. SIGNIFICANCE: Studies reveal that adipose-derived stem cells in endometrial cancer pathogenesis influence epigenetic repression of gap junction loci, which suggests targeting of gap junction activity as a preventive strategy for obesity-associated endometrial cancer.


Assuntos
Adipocinas/farmacologia , Tecido Adiposo/patologia , Comunicação Celular , Conexina 43/genética , Neoplasias do Endométrio/patologia , Repressão Epigenética , Obesidade/complicações , Tecido Adiposo/metabolismo , Animais , Movimento Celular , Células Cultivadas , Conexina 43/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Junções Comunicantes , Humanos , Masculino , Camundongos , Camundongos Knockout , Obesidade/fisiopatologia , Células Estromais/metabolismo , Células Estromais/patologia
14.
Cancer Res ; 76(21): 6171-6182, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569206

RESUMO

Overexpression of epithelial cell adhesion molecule (EpCAM) has been implicated in advanced endometrial cancer, but its roles in this progression remain to be elucidated. In addition to its structural role in modulating cell-surface adhesion, here we demonstrate that EpCAM is a regulatory molecule in which its internalization into the nucleus turns on a transcription program. Activation of EGF/EGFR signal transduction triggered cell-surface cleavage of EpCAM, leading to nuclear internalization of its cytoplasmic domain EpICD. ChIP-seq analysis identified target genes that are coregulated by EpICD and its transcription partner, LEF-1. Network enrichment analysis further uncovered a group of 105 genes encoding functions for tight junction, adherent, and cell migration. Furthermore, nanomechanical analysis by atomic force microscopy revealed increased softness and decreased adhesiveness of EGF-stimulated cancer cells, implicating acquisition of an epithelial-mesenchymal transition (EMT) phenotype. Thus, genome editing of EpCAM could be associated with altering these nanomechanical properties towards a less aggressive phenotype. Using this integrative genomic-biophysical approach, we demonstrate for the first time an intricate relationship between EpCAM-regulated transcription and altered biophysical properties of cells that promote EMT in advanced endometrial cancer. Cancer Res; 76(21); 6171-82. ©2016 AACR.


Assuntos
Neoplasias do Endométrio/patologia , Molécula de Adesão da Célula Epitelial/fisiologia , Transição Epitelial-Mesenquimal , Transcrição Gênica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Edição de Genes , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Microscopia de Força Atômica , Junções Íntimas/fisiologia
15.
Oncotarget ; 7(47): 77124-77137, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27780930

RESUMO

Activation of TGF-ß signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-ß signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-ß signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-ß and its backup partner ERK represents an attractive strategy for treating mCRPC patients.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Edição de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Transplante de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II
16.
J Mol Biol ; 343(2): 327-38, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15451664

RESUMO

RXR, a member of the superfamily of nuclear hormone receptors, regulates gene transcription in response to 9-cis-retinoic acid. We previously showed that, among nuclear receptors, RXR is unique in that it self-associates into homotetramers, and that these tetramers dissociate rapidly upon ligation. Here, we report that binding of RXR tetramers to DNA containing two RXR response elements results in a dramatic DNA-looping. RXR can thus juxtapose distant DNA sequences, enabling transcriptional regulation by far-upstream factors. We show that RXR functions as a DNA architectural factor and that, while this activity is regulated by 9-cis-retinoic acid, it is distinct from and independent of the receptor's intrinsic transcriptional activity. The data establish RXR as the first identified architectural factor whose activity is regulated by a small ligand, and demonstrate a novel mechanism of transcriptional regulation by retinoids.


Assuntos
DNA/química , Regulação da Expressão Gênica , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Receptores do Ácido Retinoico/química , Fatores de Transcrição/química , Transcrição Gênica , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , DNA/metabolismo , DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Peso Molecular , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/ultraestrutura , Sequências Reguladoras de Ácido Nucleico , Receptores X de Retinoides , Retinoides/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
17.
PLoS One ; 10(11): e0143038, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26575189

RESUMO

The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Regulação Alostérica , Substituição de Aminoácidos , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Inibidores de Proteassoma/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA