Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Prosthodont ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403847

RESUMO

The aim of this report was to digitize traditional denture relining using a digital duplication method, in addition to assessing the wear resistance of three-dimensional (3D) printed denture teeth. A complete denture was relined using light body impression. The denture with impression was scanned yielding a standard tessellation language file that was designed to print the denture base and teeth. The printed teeth were fitted into the sockets of the printed denture base and then bonded using auto-polymerized acrylic resins, followed by finishing and polishing. Dentures were inserted and fit and occlusion were adjusted as needed, and the patient was scheduled for follow-up appointments at one week, three months, and six months. At each follow-up visit, dentures were scanned using a 3Shape E3 desktop scanner and scans were superimposed. The occlusal wear was assessed in reference to the first scan after the denture insertion visit. The accuracy of the intaglio surface of dentures was within clinically acceptable limits. The clinical evaluation of inserted dentures in terms of retention, occlusion, esthetic, and patient satisfaction was encouraging. Using digital duplication, conventional dentures could be relined. The advantages of digital records include eliminating polymerization dimensional changes, and reducing cost and clinical time by minimizing the number of visits, which is particularly helpful with geriatric patients.

2.
J Prosthodont ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357722

RESUMO

PURPOSE: The aim of this study was to investigate and compare the influence of zirconium dioxide nanoparticles (ZrO2 NPs) and silicon dioxide nanoparticles (SiO2 NPs) addition and printing orientation on the flexural strength (FS) of provisional three-dimensional (3D) printing resins undergoing thermal cycling (TC). METHODS: Three dimensional-printed resin (NextDent C&B MFH) was used to fabricate 300 bar-shaped specimens (25 × 2 × 2 mm3 ). The ZrO2 NPs and SiO2 NPs specimens were divided into two groups, then subdivided into three groups, based on the nanoparticle concentration (i.e., 0 wt% (original group), 0.5 wt%, and 1 wt%). Each concentration was printed in three printing orientations (0°, 45°, and 90°). The printed specimens were exposed to 5000 cycles of TC, followed by a three-point bending test to assess the FS. Fracture surface analysis was conducted by using a scanning electron microscope (SEM). For data analysis, ANOVA and Tukey's post hoc were utilized (α = 0.05). RESULTS: Compared to the original material, the addition of ZrO2 NPs and SiO2 NPs had a significantly positive impact on the FS, (P > 0.001). After TC, the FS of the original group decreased significantly and had the lowest value. The highest FS value was observed in 1% ZrO2 NPs at 0°. Regardless of the nanoparticle concentration, the 0° orientation consistently showed a higher FS, compared to the 45° and 90° orientations. At all orientations (i.e., 0°, 45°, and 90°), the FS significantly increased with the addition of NPs, compared with that of the original material (P > 0.001). TC had a significantly negative effect on the FS of the unmodified groups. However, no significant differences existed in FS among the modified groups after TC. CONCLUSION: The addition of SiO2 NPs and ZrO2 NPs increased the FS of the 3D-printed provisional resin. Regardless of the nanoparticle concentration, the 0° orientation had the higher FS. TC had an effect on the original resin, whereas it had no significant effect on the nanoparticle-modified resins. In clinical practice, 3D-printed provisional nanocomposite resins printed at the 0° orientation could be recommended for long-term dental provisional restorations.

3.
J Prosthodont ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734933

RESUMO

PURPOSE: To evaluate the effect of different printing orientations and post-polymerization time with thermal cycling on the translucency of 3D-printed denture base resins. METHODS: Heat-polymerized (HP) acrylic resin specimens were fabricated and 3D-printed denture base materials (NextDent, ASIGA, FormLabs) were printed with different printing orientations (0, 45, 90 degrees) and subjected to different post-polymerization times (15-, 30-, 60-, and 90-min). All specimens were polished and immersed in distilled water for 1 day at 37°C. CIEDE2000 was used to measure the translucency parameters (TP00) before and after thermal cycling (5000 cycles) recording the color parameters (L*, a*, b*) against a black and white background using a spectrophotometer. k-factors ANOVA followed by post hoc Tukey's test (α = .05) was performed for statistical analysis. RESULTS: The k-factors ANOVA test showed a significant effect of resin material, post-polymerization time, and printing orientation on translucency (p < 0.001). In comparison to HP, all 3D-printed resins showed lower translucency with all post-polymerization times and printing orientation (p < 0.001) except FormLabs resin (p > 0.05). For all 3D-printed resins, the translucency increased, with increasing the post-polymerization time (p < 0.001) and 60- and 90-min showed the highest translucency. For printing orientation, 90 and 45 degrees significantly showed high translucency in comparison to 0 degrees (p < 0.001). FormLabs showed significantly higher translucency when compared with NextDent and ASIGA per respective printing orientation and post-polymerization time. The translucency significantly decreased after thermal cycling for all tested resins (p < 0.001). CONCLUSION: The findings of this study demonstrated that the translucency of 3D-printed resins is influenced by the printing orientation, post-polymerization time, and resin type. As a result, choosing a resin type, and printing orientation, with a longer post-polymerization time should be considered since it may improve the esthetic appearance of the 3D-printed resins.

4.
J Prosthodont ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39188160

RESUMO

PURPOSE: The aim of the study was to investigate the effect of surface treatment and repair materials on the flexural strength of repaired 3D-printed denture base resins after thermal aging. MATERIALS AND METHODS: Bar-shape specimens (64 × 10 × 3.3 mm) were designed as intact (control) specimens while repair specimens were printed in sections with 2.5 mm space for repair material. Printing was performed with either ASIGA or NextDent denture base material. In each material, one group received no surface treatment, while other repair groups were subjected to one of three surface treatments: (1) monomer application, (2) aluminium oxide particles-abrasion, or (3) both methods (aluminum oxide particles-abrasion and monomer application). Pairs were fixed in a customized mold then repaired with either autopolymerizing acrylic resin or flowable composite (n = 9). Repaired specimens were incubated for 48 h at 37°C in distilled water and then subjected to thermal cycling (5000 cycles). A 3-point bending test was used to evaluate the flexural strength using a universal testing machine, and mode of failure determined followed by fractured surface analysis using scanning electron microscope. Data were analyzed using ANOVA and post hoc Tukey test (α = 0.05). RESULTS: Both resin materials showed a significant decrease in the flexural strength of repaired specimens when compared to control ones (p < 0.001). Groups with no surface treatment had significantly lower flexural strength than those with surface treatment (p < 0.001). Groups treated with monomer application, and with aluminum oxide particles abrasion plus monomer application had similar flexural strength values (p > 0.05), which were higher than those treated with aluminum oxide particles abrasion alone (p < 0.001). Specimens repaired with composite resin showed higher flexural strength than those repaired with auto-polymerized resin (p < 0.05) however, specimens treated with aluminum oxide particles abrasion alone had similar values for both repair materials (p = 0.95). Adhesive failure was dominant in all repaired groups with auto-polymerized while cohesive and mixed were dominant with composite repair groups. CONCLUSION: Surface treatment improved the repair strength of 3D-printed denture base resins. Using composite resin for repair shows better strength with dominant cohesive and mixed failure suggesting that surface treatment and composite repair are suitable procedures for 3D-printed denture base repair.

5.
Int J Dent Hyg ; 22(1): 194-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37774090

RESUMO

INTRODUCTION: This study aimed to evaluate denture care and hygiene and oral health-related quality of life (OHRQoL) among complete denture (CD) wearers in the Eastern Province of Saudi Arabia. METHODOLOGY: This cross-sectional study was conducted on CD wearers in the Eastern Province of Saudi Arabia. A pre-tested questionnaire was administered among study participants. Questionnaire was divided in three sections: (1) patients' demographic data, (2) awareness and maintenance of CD and (3) OHRQoL. Independent sample t-test and one-way ANOVA test were performed. RESULTS: The study included data of 300 participants with 71% of males and 28% of females. Majority of participants (82.7%) cleaned CD daily, removed CD while sleeping (88.0%) and knew that unhygienic dentures can cause oral infection (92.7%). Only 19.3% used denture cleansing tables, 41% used toothpaste, and 60.7% rinsed CD with water. Regarding OHIP-DENT domains, highest score was for functional limitation domain (2.20 ± 1.67) and the lowest for handicap domain (0.94 ± 1.09). The mean OHIP-DENT score of the sample was 12.02 ± 8.52. Females (p = 0.006), participants below 65 years of age (p = 0.029), non-Saudis (p = 0.042), those with university education (p = 0.030) and low monthly income (p = 0.045) and participants who visited dentist due to problem with CD (p = 0.041) demonstrated significantly higher mean OHIP-DENT score. CONCLUSION: Majority of participants demonstrated appropriate denture care behaviours because they were aware of the importance of denture care and hygiene. Female gender, age below 65 years, non-Saudi nationality, university education, low monthly income and visiting dentist due to problem were related to poor OHRQoL.


Assuntos
Saúde Bucal , Qualidade de Vida , Masculino , Humanos , Feminino , Idoso , Estudos Transversais , Arábia Saudita , Prótese Total
6.
J Prosthet Dent ; 130(2): 257-264, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34799082

RESUMO

STATEMENT OF PROBLEM: Fractures of interim fixed restorations are a common complication. The autopolymerized polymethyl methacrylate resin materials used for interim fixed restorations have limited mechanical properties, but whether adding treated zirconium dioxide nanoparticles improves mechanical properties is unclear. PURPOSE: The purpose of this in vitro study was to evaluate the effect of treated zirconium dioxide nanoparticles on the flexural strength and elastic modulus of autopolymerized polymethyl methacrylate resin. MATERIAL AND METHODS: A split-metal mold (60×10×3.3 mm) was used to fabricate 40 autopolymerized acrylic resin specimens. The specimens were divided into 4 groups (n=10) according to zirconium dioxide nanoparticle concentration: control (unmodified resin) and zirconium dioxide nanoparticle contents of 1, 2.5, and 5 wt%. The specimens were mixed and polymerized according to the manufacturer's instructions and stored in distilled water for 48 ±2 hours at 37 °C. The flexural strength and elastic modulus were evaluated based on the 3-point bend test where data were analyzed by using 1-way analysis of variance and Tukey post hoc tests (α=.05). RESULTS: The flexural strength of the 1-wt% zirconium dioxide nanoparticle specimens was significantly higher than that of the control group (P<.001) but did not significantly increase further with the higher nanoparticle content (P>.05). Elastic modulus significantly decreased with 2.5-wt% zirconium dioxide nanoparticles (P=.019), while no significant changes were found with other test groups (P>.05). CONCLUSIONS: The addition of treated zirconium dioxide nanoparticles at low concentrations increased the flexural strength of autopolymerized polymethyl methacrylate resins used in fixed interim restorations.


Assuntos
Resistência à Flexão , Nanopartículas , Polimetil Metacrilato , Teste de Materiais , Nanopartículas/uso terapêutico , Propriedades de Superfície , Maleabilidade , Estresse Mecânico
7.
BMC Oral Health ; 23(1): 337, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37254115

RESUMO

BACKGROUND: Enhancement of students' knowledge is essential in improving their clinical skills and performance. Thus, the curriculum should be prepared to achieve a better outcome. The current study aimed to determine the dental students' and interns' basic knowledge towards dental luting cements and their application in dental practice to improve the theoretical and clinical training sections. MATERIALS AND METHODS: A cross-sectional study was conducted among dental students and interns at three Colleges of Dentistry in the Kingdom of Saudi Arabia between September 2019-June 2020. An online questionnaire was used which included demographic data, questions about luting cement usage, cementation techniques, and commonly used cements in dental clinics. Descriptive analysis and chi-square test were used to show the association between level of dental education and the use of dental cements using SPSS software. The significance level was set at 5%. RESULTS: The total respondents were 626 dental students/interns of whom 78.8% were undergraduate dental students. Participants who reported undergraduate studies as the source of information were 79.7%. The type of restoration was the main factor in luting cement selection (62.6%). Concerning the isolation technique in cementing laminate veneers, 49.7% used dri-angles, cotton rolls and saliva ejectors. Dual-cure resin cement was the most common cement used in all the mentioned restorations except in pressed porcelain laminate veneers and cement-retained implant-supported restorations. CONCLUSIONS: Students' knowledge and practice in managing dental implants and porcelain laminate veneers need to be improved. The selection of a luting agent for a given restoration by students and interns was based on the basic knowledge, available cement, and the type of restoration. Awareness towards the management of short prepared teeth and custom-made cast posts and cores is also limited.


Assuntos
Cimentos Dentários , Porcelana Dentária , Humanos , Prostodontia , Estudos Transversais , Arábia Saudita , Estudantes de Odontologia , Cimentos de Resina , Cimentos de Ionômeros de Vidro , Teste de Materiais
8.
J Prosthodont ; 32(S1): 96-110, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36629333

RESUMO

PURPOSE: The strength of 3D-printed resins is affected by different factors, but review articles clarifying these factors are limited. This review lists the factors affecting the strength of 3D-printed resins and the possible correlations between them to answer the study question: What are the factors affecting the flexural strength of 3D-printed resins? METHODS: A database search (PubMed, Google Scholar, and Scopus) was performed, limited to English-language publications between 2010 and February 1, 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used for study selection. The modified Consolidated Standards of Reporting Trials (CONSORT) checklist was used to determine the risk of bias of the included studies in this review. The data analysis was descriptive due to the presence of many variables in the included studies. RESULTS: Out of 123 studies, 26 were reviewed for full-text analysis, and 19 met the inclusion criteria and were thus included in this systematic review. The included studies were divided according to the investigated resin: 5 studies tested provisional restorations, seven tested denture base resins, 2 tested occlusal devices, 3 tested orthodontic appliances, 1 tested denture teeth, and 1 tested surgical guide resins. These studies investigated the flexural strength of 3D-printed resins, with different factors, such as reinforcement with fillers or nanofillers; printing orientation, angulation, and directions; post-polymerization time and temperature; third-party printing (switching between printers and materials); printing layer thickness; and post-printing rinsing time. Most factors significantly affected the flexural strength of 3D-printed resin. CONCLUSIONS: The strength of 3D-printed resins could be improved with one or more of the following factors: filler or nanofiller addition; printing orientation, angulation, or directions; printing layer thickness; and post-polymerization time and temperature. However, further studies combining these factors are recommended.


Assuntos
Resistência à Flexão , Impressão Tridimensional , Teste de Materiais , Propriedades de Superfície , Temperatura
9.
J Prosthodont ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953735

RESUMO

PURPOSE: To assess the influence of denture brushing on the surface roughness, hardness, and color stability of conventional, thermoformed, and CAD-CAM denture base materials. MATERIALS AND METHODS: Seven different denture base materials were included in this study; conventional heat-polymerized acrylic resin (PMMA) served as control, polyamide, acetal, two categories of milled acrylic discs (AvaDent and IvoCad), and two categories of 3D-printed resins (NextDent and FormLabs). The specimens were constructed according to manufacturers' instructions and then subjected to simulated brushing (20,000 cycles). According to the brushing method, the specimens were split into three groups, no brushing, brushing with water, and brushing with toothpaste. Surface roughness, hardness, and color change were evaluated before and after brushing. Collected data were analyzed using ANOVA, and post-hoc Tukey's tests (α = 0.05). RESULTS: A significant difference was noted between the surface roughness of the tested materials before and after denture brushing (p < 0.05), and milled resin showed the least Ra values. Denture brushing with water significantly increased the Ra of PMMA (p = 0.004) and IvoCad (p = 0.032), while brushing using toothpaste did not show a significant increase. The brushing protocols did not alter the hardness of tested materials except that of PMMA (p = 0.001). The color stability of the tested materials showed comparable results with both brushing protocols. CONCLUSION: The tested properties showed variations between the types of denture base resins. Hardness and color stability of CAD-CAM and thermoformed denture base resins were not altered by denture brushing and showed comparable results with both brushing methods. Surface roughness was the only property that showed alteration after denture brushing.

10.
J Prosthodont ; 32(2): 170-177, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35411606

RESUMO

PURPOSE: The longevity of removable prostheses is mostly influenced by the properties of the used materials. The ability of the material to withstand high occlusal loads without deformation can enhance patient satisfaction and quality of life. This in vitro study aimed to investigate the wear and fracture resistance of three-dimensional (3D)-printed teeth compared with commercially available acrylic resin teeth. MATERIALS AND METHODS: A total of 40 prefabricated acrylic teeth and 40 3D-printed teeth were prepared in two forms: anatomical for fracture resistance or flat for wear resistance (n = 10). For wear evaluation, specimens were scanned at baseline and then subjected to thermal cycling (10,000 cycles). This was followed by a chewing simulator (60,000 cycles) against either metal or natural tooth. Then, the specimens were scanned again. Wear analysis was performed by superimposing the standard tessellation language (STL) files from baseline and the final scans with the aid of GOM Inspect 2020 software. Fracture resistance was assessed with a universal testing machine at a crosshead speed of 0.5 mm/min before and after thermal cycling. Data were analyzed with two-independent t-test and two-way ANOVA (α = 0.05). RESULTS: The 3D-printed teeth showed significantly lower wear resistance than the prefabricated ones with both antagonists (metal, p = 0.049; natural tooth, p = 0.021). The fracture resistance of the 3D-printed teeth was significantly higher than that of the prefabricated teeth before thermocycling (p = 0.042). After thermal cycling, the fracture resistance of both groups was decreased with no significant differences between them (p = 0.266). CONCLUSIONS: The 3D-printed teeth showed lower wear resistance and higher fracture resistance than the prefabricated ones. Thermal cycling negatively affected the fracture resistance of 3D-printed teeth.


Assuntos
Resinas Acrílicas , Qualidade de Vida , Humanos , Teste de Materiais , Dentaduras , Impressão Tridimensional
11.
J Prosthodont ; 32(1): 77-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35343012

RESUMO

PURPOSE: To compare the flexural strength of computer-aided design and computer-aided manufacturing (CAD-CAM) milled denture base resin (DBR), 3D-printed DBR, polyamide, and conventional compression-molded DBR. MATERIALS AND METHODS: Six denture base resins were used, one conventional heat-polymerized (Vertex), two milled CAD-CAM (AvaDent and Polident), two 3D-printed (Harz and NextDent), and one flexible polyamide (Polyamide). According to ISO 20795-1:2013, 60 specimens (65×10×3 mm) were constructed and divided into six groups (n = 10), according to DBR type. The flexural strength was measured using a universal testing machine and three-point loading test. Data were collected and analyzed using one-way ANOVA and Tukey's pair-wise post hoc tests (α = 0.05). RESULTS: One-way ANOVA results showed significant differences in flexural strengths between the tested DBRs (p˂0.001). Milled denture base resins (AvaDent and Polident) had significantly higher flexural strength values than the other groups (p˂0.001) and were followed by Vertex and NextDent, while Polyamide and Harz had the lowest values. Polyamide and Harz denture base resins had significantly lower flexural strength values than conventional denture base resin (p˂0.001). CONCLUSION: CAD-CAM milled DBRs showed the highest flexural strength when compared with conventional compression-molded or 3D-printed DBRs, while 3D-printed DBRs and polyamide showed the lowest flexural strengths.


Assuntos
Resistência à Flexão , Nylons , Teste de Materiais , Bases de Dentadura , Polimetil Metacrilato , Desenho Assistido por Computador , Impressão Tridimensional
12.
J Prosthodont ; 32(4): 298-308, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35801581

RESUMO

PURPOSE: To introduce a new technique, denture base layering, for the addition of titanium dioxide nanoparticles (TiO2 NPs) to polymethylmethacrylate (PMMA) and to investigate the effects of the layering technique on Candida albicans (C. albicans) adhesion and on surface roughness, hardness, translucency, and flexural strength. MATERIALS AND METHODS: In total, 210 heat-polymerized acrylic resin specimens were prepared as discs (15 × 2 mm) for testing C. albicans adhesion (n = 70) and surface roughness, hardness, and translucency (n = 70); and as acrylic plates (65 × 10 × 2.5 mm) for testing flexural strength (n = 70). Specimens were divided into 4 groups: control (n = 30), one-layer (n = 60), double-layer (n = 60), and dotted-layer (n = 60) according to the packing and layering technique. Each group was divided according to the concentration of TiO2 NPs 1% and 2.5% (n = 10). The control group comprised one layer of unmodified resin. The one-layer group comprised one layer of a mixture of PMMA/TiO2 NPs packed conventionally. The double-layer group consisted of two different layers packed in two steps, as follows: unmodified resin first, followed by a continuous thin layer of the PMMA/TiO2 NPs mixture. Similarly, the dotted-layer group consisted of two different layers packed in two steps, as follows: unmodified resin first, followed by a thin layer of the PMMA/TiO2 NPs. However, the second mixture was added in a dotted manner. The direct culture method for C. albicans adhesion before and after ultraviolet light activation, and surface roughness, hardness, translucency, and flexural strength were measured. An analysis of variance and Tukey's post hoc test were used for data analysis (α = 0.05). RESULTS: The addition of TiO2 NPs reduced C. albicans adhesion (p < 0.001). However, no significant difference was found between both concentrations within the same group before and after ultraviolet light activation (p > 0.05), except in the 1% dotted-layer (p = 0.022). Surface roughness and hardness were not affected by the additions of different concentrations of TiO2 NPs (p = 0.905) and (p = 0.059), respectively. Translucency was significantly reduced in all the groups (p < 0.001) except in the 1% dotted-layer (p = 0.332). Flexural strength decreased as the TiO2 NPs concentration increased, with the greatest reduction in strength observed in the one-layer group (p < 0.001). CONCLUSIONS: The double and dotted layering techniques were effective in reducing C. albicans adhesion, without affecting surface roughness, hardness, or flexural strength. However, translucency was reduced in all the groups, except the 1% dotted-layer group.


Assuntos
Antifúngicos , Polimetil Metacrilato , Polimetil Metacrilato/farmacologia , Teste de Materiais , Antifúngicos/farmacologia , Propriedades de Superfície , Bases de Dentadura , Candida albicans
13.
J Prosthodont ; 32(S1): 45-52, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35902078

RESUMO

PURPOSE: To evaluate the effect of printing orientation combined with different postcuring times on the flexural strength of 3D-printed resins. MATERIALS AND METHODS: A total of 480 rectangular specimens with the dimensions of 64×10×3.3 mm were designed and fabricated from two 3D-printed acrylic resins and one heat-polymerized resin (HP). 3D-printed groups were divided into 3 groups according to printing orientations (0-, 45-, 90-degree); each group was subdivided into 4 groups according to postcuring time (30, 60, 90, 120 min.). All specimens were subjected to thermal cycling (10,000 cycles) before testing flexural strength. Fractured surfaces were examined under a scanning electron microscope (SEM). ANOVA and Tukey's post hoc tests were used for data analysis (α = 0.05). RESULTS: The result of this study showed that the highest flexural strength values of 3D-printed resin (NextDent, and ASIGA) were in 0-degree groups. Also, the flexural strength values increased when postcuring time was increased, regardless of the printing orientation; the highest flexural strength was recorded at 120 minutes postcuring time in all orientations. SEM analysis showed a rougher surface with irregular lamellae which represented a ductile fracture confirming that high energy is required for crack propagation and these features markedly increased as postcuring time increased. CONCLUSION: The results showed that the 0-degree orientation groups showed higher flexural strength compared to other groups. Similarly, with increased postcuring time, the flexural strength increased.


Assuntos
Resinas Acrílicas , Resistência à Flexão , Teste de Materiais , Temperatura Alta , Impressão Tridimensional , Propriedades de Superfície
14.
J Prosthodont ; 32(4): 318-324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35567362

RESUMO

PURPOSE: To compare flexural strength, elastic modulus, and surface hardness of computer aided design and computer aided manufacturing CAD-CAM milled, 3D-printed, and heat-polymerized denture base resins. MATERIALS AND METHODS: A total of 120 specimens were fabricated from heat-polymerized acrylic resin (HP), milled resin (Avadent and IvoCad), and 3D-printed resin (ASIGA, FormLabs, and NextDent). The specimens were divided into 6 groups according to the type of denture base material (n = 20/material) (10/flexural properties and 10/hardness). Flexural strength and elastic modulus of the specimens were evaluated by 3-point bending test and surface hardness by Vickers hardness test. To test flexural properties, the specimens were fabricated according to ISO 20795-1:2013 standards (64 × 10 × 3.3 ± 0.2 mm). The dimensions for hardness test were 15 × 10 × 2.5 ± 0.2 mm. Scanning electron microscope was used to evaluate the surface morphology of the fractured specimens. The means and standard deviations were calculated, followed by one-way ANOVA and Tukey post-hoc test (α = 0.05). RESULTS: Milled resins showed significantly higher values for flexural strength, elastic modulus, and surface hardness, followed by HP and then 3D-printed resins (p < 0.001). Within milled groups, flexural strength of AvaDent was significantly higher than IvoCad (p < 0.001), while elastic modulus and hardness didn't show significant difference. Within 3D-printed resins, ASIGA showed the highest flexural strength and elastic modulus, insignificantly with FormLabs (p = 0.595) and significantly with NextDent (p = 0.008). ASIGA also showed significantly the highest hardness among the 3D-printed groups. No significant difference was found between FormLabs and NextDent in flexural strength (p = 0.357), elastic modulus (p = 1.00), or surface hardness (p = 0.987). CONCLUSION: CAD-CAM milled resins had greater flexural properties and hardness compared to heat-polymerized acrylic resin and 3D-printed resins. Although 3D-printed samples showed the lowest values of tested properties, the flexural strength and modulus were above clinically acceptable values.


Assuntos
Bases de Dentadura , Resistência à Flexão , Teste de Materiais , Dureza , Desenho Assistido por Computador , Resinas Acrílicas , Propriedades de Superfície
15.
Medicina (Kaunas) ; 59(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241206

RESUMO

BACKGROUND: Denture adhesives (DAs) enhance denture retention and stability, thus improving functions of removable prostheses. However, the adverse effects of DAs on denture foundation area were also reported. The clinical use of DAs among dentists has not been investigated in Saudi Arabia. Therefore, this study aimed to evaluate utilization of DAs and associated factors among dental practitioners in Saudi Arabia. METHODS: This cross-sectional study included dental professionals practicing in both public and private sectors in the Eastern Province of Saudi Arabia. A self-administered pilot tested questionnaire was distributed among participants. The questionnaire has questions related to demographic information, knowledge and awareness, and the utilization of DAs. Bivariate and multiple logistic regression analyses were performed. RESULTS: The study included 279 participants with a response rate of 79.03%. The majority of participants (61.6%) were below 35 years of age, males (56.6%), general dentists (57.3%), and worked in the private sector (59.9%). Less than half of the participants (39.4%) used DAs in their dental practice, and 64.5% recommended using DAs when needed. The most reported complications of DAs included inflammation (58.40%), ulcers (35.10%), and whitish color (31.20%) of denture foundation area. A vast majority (83.90%) reported that DAs improve retention of the dentures. About 55.2% of the participants were taught about DAs in their undergraduate programs, 12.5% attended continuing education, and 21.5% updated their knowledge about DAs. Multiple logistic regression showed that those who attended continuing education activities (adjusted OR = 2.41, p = 0.036) and updated their knowledge about DAs (adjusted OR = 4.43, p = < 0.001) were significantly more likely to use DAs in their dental practice. CONCLUSION: A minority of dental practitioners used DAs in their practices. Attending continuing education programs and updating knowledge of DAs were significantly associated with DAs utilization.


Assuntos
Odontólogos , Papel Profissional , Masculino , Humanos , Arábia Saudita , Estudos Transversais , Dentaduras
16.
J Prosthet Dent ; 127(1): 174-183, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33190862

RESUMO

STATEMENT OF PROBLEM: Whether the addition of different antifungal nanoparticles to denture base materials may affect physical or esthetic properties of the resulting nanocomposite is unclear. PURPOSE: The purpose of this in vitro study was to determine how a new method of adding antifungal nanofiller affects the properties of the processed nanocomposite denture base material. MATERIAL AND METHODS: Heat-polymerized acrylic resin specimens were prepared according to each test specification. Zirconium dioxide nanoparticles (ZrO2NPs) and silver nanoparticles (AgNPs) were added in 0.5, 1.0, and 1.5% of acrylic resin powder. The specimens were divided into 2 groups according to the acrylic resin packing method: 1 layer packed conventionally in one step and 2 layers packed in 2 steps, first with unmodified acrylic resin and then by a thin layer of modified acrylic resin before the final closure. The control group was made of unaltered acrylic resin in 1 step. Flexural strength (FS), translucency, and surface roughness (Ra) were measured. A microbial assay was performed by using the direct culture and slide count methods. Three-way ANOVA and Tukey post hoc tests were used to identify statistical differences among groups (α=.05). RESULTS: The addition of ZrO2NPs and AgNPs in the 1- or 2-layer specimens reduced Candida albicans adhesion (P<.001). In the 1- and 2-layer specimens, FS significantly increased with ZrO2NPs. AgNPs decreased FS only in the 1-layer specimen (P<.001). Surface roughness was not changed for the 1- and 2-layer specimens with ZrO2NPs or the 1-layer specimen with 0.5% AgNPs (P>.05), while other AgNP groups exhibited increased surface roughness (P<.001). AgNPs significantly lowered translucency in the 1- and 2-layer specimens (P<.001), while ZrO2NPs decreased translucency only in the 1-layer specimen (P<.001). CONCLUSIONS: The addition of ZrO2NPs in the double-layer technique decreased Candida adhesion and improved FS without affecting surface roughness, while AgNPs decreased Candida adhesion and FS and increased surface roughness. Both nanofillers decreased the translucency except 0.5% ZrO2NPs, which did not change translucency when applied in 2 layers.


Assuntos
Resinas Acrílicas , Nanopartículas Metálicas , Bases de Dentadura , Estética Dentária , Teste de Materiais , Polimetil Metacrilato , Prata , Propriedades de Superfície
17.
J Prosthodont ; 31(9): 784-790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35061921

RESUMO

PURPOSE: To evaluate the flexural strength (FS), impact strength (IS), surface roughness (Ra), and hardness of 3D-printed resin incorporating silicon dioxide nanoparticles (SNPs). MATERIALS AND METHODS: A total of 320 acrylic specimens were fabricated with different dimensions according to test specifications and divided into a control group of heat denture base resin, and 3 test groups (80/test (n = 10) of unmodified, 0.25 wt%, and 0.5 wt% SNPs modified 3D-printed resin. 10,000 thermal cycles were performed to half of the fabricated specimens. FS, IS (Charpy impact), Ra, and hardness were evaluated and the collected data was analyzed with ANOVA followed by Tukey's post hoc test (α = 0.05). RESULTS: Incorporating SNPs into 3D-printed resin significantly increased the FS, IS (at 0.5%) and hardness compared to unmodified 3D-printed resin (p < 0.001). However, the FS of pure 3D-printed and 3D/SNP-0.50% resin and IS of all 3D-printed resin groups were significantly lower than the control group (p < 0.0001). Hardness of 3D/SNP-0.25% and 3D/SNP-0.50% was significantly higher than control and unmodified 3D-printed resin (p < 0.0001), with insignificant differences between them. The Ra of all 3D-printed resin groups were significantly higher than control group (p < 0.001), while insignificant difference was found between 3D-printed groups. Thermal cycling significantly reduced FS and hardness for all tested groups, while for IS the reduction was significant only in the control and 3D/SNP-0.50% groups. Thermal cycling significantly increased Ra of the control group and unmodified 3D-printed resin (p < 0.001). CONCLUSION: The addition of SNPs to 3D-printed denture base resin improved its mechanical properties while Ra was not significantly altered. Thermal cycling adversely affected tested properties, except IS of unmodified 3D-printed resin and 3D/SNP-0.25%, and Ra of modified 3D-printed resin.


Assuntos
Nanopartículas , Dióxido de Silício , Bases de Dentadura , Teste de Materiais , Propriedades de Superfície
18.
J Prosthodont ; 31(5): 427-433, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34480386

RESUMO

PURPOSE: This in vitro study aims to assess the impact of various surface treatments on the shear bond strength (SBS) of two types of artificial teeth and denture base resins (DBRs). MATERIALS AND METHODS: Two types of DBRs (CAD/CAM-milled and heat-polymerized) and two types of denture teeth (acrylic and composite) were investigated. Teeth were cut into slices (5 × 5 × 2 mm) and divided according to surface treatment into four subgroups (n = 10): no treatment (control), air abrasion (Alumina-blasting; AB), bur roughening, and dichloromethane (DCM) subgroups. According to manufacturer recommendations, the treated tooth slices were bonded to the acrylic disk of DBRs. The SBS test was performed using a universal testing machine. ANOVA was used for results analysis followed by Tukey's post hoc tests (α = 0.05). RESULTS: DCM and AB increased the SBS of acrylic teeth to heat-polymerized DBR compared with other groups (p < 0.001). All surface treatments showed no significant difference in CAD/CAM DBR with acrylic teeth (p = 0.059; AB, p = 0.319; bur roughening, p = 0.895; DCM), while there was a significant decrease in SBS with composite teeth (p ˂ 0.001). Between teeth, acrylic teeth showed a statistically significant increase in SBS compared to composite teeth (p < 0.001). CONCLUSION: AB and DCM application improved the SBS for acrylic teeth with the heat-polymerized DBR when compared with the untreated group, but none of the surface treatment agents showed significant improvement with CAD/CAM DBR. All surface treatment agents reduced the SBS for composite teeth with CAD/CAM DBR while AB only increased the SBS with heat-polymerized DBR.


Assuntos
Colagem Dentária , Dente Artificial , Resinas Acrílicas/química , Resinas Acrílicas/uso terapêutico , Abrasão Dental por Ar , Colagem Dentária/métodos , Análise do Estresse Dentário , Bases de Dentadura , Teste de Materiais , Polimetil Metacrilato/química , Resistência ao Cisalhamento , Propriedades de Superfície
19.
J Prosthodont ; 31(6): 512-520, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34626145

RESUMO

PURPOSE: The aim of this in vitro study was to evaluate the effects of different durations of silane coupling agent application compared to a universal adhesive system regarding the shear bond strength of two ceramic materials. MATERIALS AND METHODS: A total of 120 human molars were ground to the dentinal coronal third and then fixed into an acrylic resin holder. Lithium disilicate specimens were divided into two main groups according to the ceramic type: computer-aided design/computer-aided manufacturing IPS e.max CAD and heat-pressed Initial LiSi Press GC (dimensions of 4 × 3× 3 mm). Each main group was subdivided into 6 subgroups (n = 10) according to the duration of the silane and universal adhesive system application (20, 60, or 120 seconds) on the ceramic surface before cementation; then, the cementation procedures were performed. All specimens were subjected to 5000 thermal cycles at 5 and 55°C before testing. The shear bond strength was measured using a universal testing machine. ANOVA and Scheffe post hoc test multiple comparisons tests were conducted (α = 0.05). RESULTS: The shear bond strength increased as the duration of the silane and universal adhesive system application increased. The highest bond value for each material was found for the silane application at 120 seconds, with a significant difference between 120 and 60, and 20 seconds for both e. max CAD and Initial LiSi materials (p = 0.029 and p ˂ 0.001, respectively). No significant difference was found between 60 and 20 seconds when silane and universal adhesive system were applied for both e. max CAD and Initial LiSi materials (p = 0.169 and p = 0.120, respectively). All groups treated with the silane primer showed significantly higher values than the universal adhesive system for each application time (p ˂ 0.001). CONCLUSION: Increasing the duration of the silane coupling agent and universal adhesive system application to 120 seconds on the ceramic surface before cementation improved the shear bond strength of the ceramic-cement interface. Ceramic pretreatment with silane could be an essential step for bonding ceramic to dentin regardless of silane presence in the universal adhesive system.


Assuntos
Colagem Dentária , Silanos , Cerâmica/química , Colagem Dentária/métodos , Cimentos Dentários/química , Porcelana Dentária/química , Humanos , Lítio , Teste de Materiais , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície
20.
J Prosthodont ; 31(6): 529-536, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34693606

RESUMO

PURPOSE: To evaluate the effect of different polishing pastes with different particle sizes on the surface finish of two different CAD/CAM ceramics. MATERIALS AND METHODS: A total of 128 specimens were prepared of two CAD/CAM ceramics: lithium disilicate (12.4 × 14.5 × 2 mm) and monolithic zirconia (17.5 × 12.5 × 2.5 mm). They were divided randomly into 8 groups according to surface treatment (n = 8). Group 1 (control) was left as received after crystallization or sintering with no further surface treatment; Group 2 (glazed); Group 3 (positive control), where specimens were polished using standardized surface treatment (medium grit silicon carbide discs, rubber cup and pumice slurry, then rubber cup and toothpaste). For groups 4 to 8, in addition to silicon carbide and pumice slurry polishing, specimens were further polished using a diamond paste (DP), and polishing pastes of microzirconia (MZ), nanosilica (NS), nanodiamond (ND), and nanozirconia (NZ), respectively. Surface roughness (Ra ) was measured using noncontact profilometer. The mean values were compared using ANOVA and Post Hoc Tukey's test (α = 0.05). Specimens' surfaces were studied using a scanning electron microscope (SEM). RESULTS: Positive control group and MZ exhibited significant Ra of lithium disilicate compared to control (p ˂ 0.001), glazed (p = 0.001), DPs (p = 0.002), NS (p ˂ 0.001), ND (p ˂ 0.001), and NZ (p = 0.002). In the case of zirconia, positive control showed a significantly higher Ra compared to all other groups (p ˂ 0.001). No statistical difference was found between all other polishing techniques (positive control, glazed, DPs, NS, ND, MZ, and NZ) (p > 0.05). CONCLUSION: Polishing with ND, NZ, and NS lab-formulated pastes produced surfaces with comparable smoothness to control and glazed specimens for lithium disilicate and zirconia ceramic materials.


Assuntos
Polimento Dentário , Borracha , Cerâmica/química , Desenho Assistido por Computador , Materiais Dentários/química , Polimento Dentário/métodos , Porcelana Dentária/química , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA