Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 595(7): 2339-2364, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859264

RESUMO

KEY POINTS: Endothelial inwardly rectifying K+ (Kir2.1) channels regulate flow-induced vasodilatation via nitric oxide (NO) in mouse mesenteric resistance arteries. Deficiency of Kir2.1 channels results in elevated blood pressure and increased vascular resistance. Flow-induced vasodilatation in human resistance arteries is also regulated by inwardly rectifying K+ channels. This study presents the first direct evidence that Kir channels play a critical role in physiological endothelial responses to flow. ABSTRACT: Inwardly rectifying K+ (Kir) channels are known to be sensitive to flow, but their role in flow-induced endothelial responses is not known. The goal of this study is to establish the role of Kir channels in flow-induced vasodilatation and to provide first insights into the mechanisms responsible for Kir signalling in this process. First, we establish that primary endothelial cells isolated from murine mesenteric arteries express functional Kir2.1 channels sensitive to shear stress. Then, using the Kir2.1+/- heterozygous mouse model, we establish that downregulation of Kir2.1 results in significant decrease in shear-activated Kir currents and inhibition of endothelium-dependent flow-induced vasodilatation (FIV) assayed in pressurized mesenteric arteries pre-constricted with endothelin-1. Deficiency in Kir2.1 also results in the loss of flow-induced phosphorylation of eNOS and Akt, as well as inhibition of NO generation. All the effects are fully rescued by endothelial cell (EC)-specific overexpression of Kir2.1. A component of FIV that is Kir independent is abrogated by blocking Ca2+ -sensitive K+ channels. Kir2.1 has no effect on endothelium-independent and K+ -induced vasodilatation in denuded arteries. Kir2.1+/- mice also show increased mean blood pressure measured by carotid artery cannulation and increased microvascular resistance measured using a tail-cuff. Importantly, blocking Kir channels also inhibits flow-induced vasodilatation in human subcutaneous adipose microvessels. Endothelial Kir channels contribute to FIV of mouse mesenteric arteries via an NO-dependent mechanism, whereas Ca2+ -sensitive K+ channels mediate FIV via an NO-independent pathway. Kir2 channels also regulate vascular resistance and blood pressure. Finally, Kir channels also contribute to FIV in human subcutaneous microvessels.


Assuntos
Artérias Mesentéricas/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Vasodilatação/fisiologia , Adulto , Animais , Células Endoteliais/fisiologia , Humanos , Masculino , Camundongos Transgênicos , Microvasos/fisiologia , Pessoa de Meia-Idade , Canais de Potássio Corretores do Fluxo de Internalização/genética
2.
J Mol Cell Cardiol ; 51(5): 812-20, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21840315

RESUMO

We have recently shown that a temporary increase in sarcoplasmic reticulum (SR) cycling via adenovirus-mediated overexpression of sarcoplasmic reticulum ATPase (SERCA2) transiently improves relaxation and delays hypertrophic remodeling in a familial hypertrophic cardiomyopathy (FHC) caused by a mutation in the thin filament protein, tropomyosin (i.e., α-TmE180G or Tm180). In this study, we sought to permanently alter calcium fluxes via phospholamban (PLN) gene deletion in Tm180 mice in order to sustain long-term improvements in cardiac function and adverse cardiac remodeling/hypertrophy. While similar work has been done in FHCs resulting from mutations in thick myofilament proteins, no one has studied these effects in an FHC resulting from a thin filament protein mutation. Tm180 transgenic (TG) mice were crossbred with PLN knockout (KO) mice and four groups were studied in parallel: 1) non-TG (NTG), 2) Tm180, 3) PLNKO/NTG and 4) PLNKO/Tm180. Tm180 mice exhibit increased heart weight/body weight and hypertrophic gene markers compared to NTG mice, but levels in PLNKO/Tm180 mice were similar to NTG. Tm180 mice also displayed altered function as assessed via in situ pressure-volume analysis and echocardiography at 3-6 months and one year; however, altered function in Tm180 mice was rescued back to NTG levels in PLNKO/Tm180 mice. Collagen deposition, as assessed by Picrosirius Red staining, was increased in Tm180 mice but was similar in NTG and in PLNKO/Tm180 mice. Extracellular signal-regulated kinase (ERK1/2) phosphorylation increased in Tm180 mice while levels in PLNKO/Tm180 mice were similar to NTGs. The present study shows that by modulating SR calcium cycling, we were able to rescue many of the deleterious aspects of FHC caused by a mutation in the thin filament protein, Tm.


Assuntos
Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Tropomiosina/genética , Animais , Peso Corporal , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/uso terapêutico , Cardiomiopatia Hipertrófica Familiar/diagnóstico por imagem , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Cardiomiopatia Hipertrófica Familiar/terapia , Modelos Animais de Doenças , Ecocardiografia , MAP Quinases Reguladas por Sinal Extracelular/genética , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Contração Miocárdica/genética , Miocárdio/citologia , Miocárdio/metabolismo , Tamanho do Órgão , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Tropomiosina/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 301(4): H1646-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21743000

RESUMO

The effects of nicotine (NIC) on normal hearts are fairly well established, yet its effects on hearts displaying familial hypertrophic cardiomyopathy have not been tested. We studied both the acute and chronic effects of NIC on a transgenic (TG) mouse model of FHC caused by a mutation in α-tropomyosin (Tm; i.e., α-Tm D175N TG, or Tm175). For acute effects, intravenously injected NIC increased heart rate, left ventricular (LV) pressure, and the maximal rate of LV pressure increase (+dP/dt) in non-TG (NTG) and Tm175 mice; however, Tm175 showed a significantly smaller increase in the maximal rate of LV pressure decrease (-dP/dt) compared with NTGs. Western blots revealed phosphorylation of phospholamban Ser16 and Thr17 residue increased in NTG mice following NIC injection but not in Tm175 mice. In contrast, phosphorylation of troponin I at serine residues 23 and 24 increased equally in both NTG and Tm175. Thus the attenuated increase in relaxation in Tm175 mice following acute NIC appears to result primarily from attenuated phospholamban phosphorylation. Chronic NIC administration (equivalent to smoking 2 packs of cigarettes/day for 4 mo) also increased +dP/dt in NTG and Tm175 mice compared with chronic saline. However, chronic NIC had little effect on heart rate, LV pressure, -dP/dt, LV wall and chamber dimensions, or collagen content for either group of mice.


Assuntos
Cardiomiopatia Hipertrófica Familiar/tratamento farmacológico , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Tropomiosina/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Separação Celular , Colágeno/metabolismo , Ecocardiografia , Feminino , Corantes Fluorescentes , Fura-2 , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/efeitos dos fármacos
4.
J Mol Cell Cardiol ; 48(5): 834-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20079744

RESUMO

Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that frequently show inappropriate ventricular hypertrophy or dilation. Current data suggest that numerous mutations in several genes can cause cardiomyopathies, and the severity of their phenotypes is also influenced by modifier genes. Two major types of inherited cardiomyopathies include familial hypertrophic cardiomyopathy (FHC) and dilated cardiomyopathy (DCM). FHC typically involves increased myofilament Ca(2+) sensitivity associated with diastolic dysfunction, whereas DCM often results in decreased myofilament Ca(2+) sensitivity and systolic dysfunction. Besides alterations in myofilament Ca(2+) sensitivity, alterations in the levels of Ca(2+)-handling proteins have also been described in both diseases. Recent work in animal models has attempted to rescue FHC and DCM via modifications at the myofilament level, altering Ca(2+) homeostasis by targeting Ca(2+)-handling proteins, such as the sarcoplasmic reticulum ATPase and phospholamban, or by interfering with the products of different modifiers genes. Although attempts to rescue cardiomyopathies in animal models have shown great promise, further studies are needed to validate these strategies in order to provide more effective and specific treatments.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/metabolismo , Sarcômeros/metabolismo , Animais , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/terapia , Cardiomiopatia Hipertrófica Familiar/tratamento farmacológico , Cardiomiopatia Hipertrófica Familiar/terapia , Humanos , Sarcômeros/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
J Mol Cell Cardiol ; 49(6): 993-1002, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20854827

RESUMO

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant genetic disorder linked to numerous mutations in the sarcomeric proteins. The clinical presentation of FHC is highly variable, but it is a major cause of sudden cardiac death in young adults with no specific treatments. We tested the hypothesis that early intervention in Ca(2+) regulation may prevent pathological hypertrophy and improve cardiac function in a FHC displaying increased myofilament sensitivity to Ca(2+) and diastolic dysfunction. A transgenic (TG) mouse model of FHC with a mutation in tropomyosin at position 180 was employed. Adenoviral-Serca2a (Ad.Ser) was injected into the left ventricle of 1-day-old non-transgenic (NTG) and TG mice. Ad.LacZ was injected as a control. Serca2a protein expression was significantly increased in NTG and TG hearts injected with Ad.Ser for up to 6 weeks. Compared to TG-Ad.LacZ hearts, the TG-Ad.Ser hearts showed improved whole heart morphology. Moreover, there was a significant decline in ANF and ß-MHC expression. Developed force in isolated papillary muscle from 2- to 3-week-old TG-Ad.Ser hearts was higher and the response to isoproterenol (ISO) improved compared to TG-Ad.LacZ muscles. In situ hemodynamic measurements showed that by 3 months the TG-Ad.Ser hearts also had a significantly improved response to ISO compared to TG-Ad.LacZ hearts. The present study strongly suggests that Serca2a expression should be considered as a potential target for gene therapy in FHC. Moreover, our data imply that development of FHC can be successfully delayed if therapies are started shortly after birth.


Assuntos
Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Cardiomiopatia Hipertrófica Familiar/terapia , Técnicas de Transferência de Genes , Terapia Genética , Testes de Função Cardíaca , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Remodelação Ventricular/fisiologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Fator Natriurético Atrial/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Injeções , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Remodelação Ventricular/efeitos dos fármacos
6.
Sci Signal ; 10(489)2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743802

RESUMO

In addition to controlling blood pressure, cardiac natriuretic peptides (NPs) can stimulate lipolysis in adipocytes and promote the "browning" of white adipose tissue. NPs may also increase the oxidative capacity of skeletal muscle. To unravel the contribution of NP-stimulated metabolism in adipose tissue compared to that in muscle in vivo, we generated mice with tissue-specific deletion of the NP clearance receptor, NPRC, in adipose tissue (NprcAKO ) or in skeletal muscle (NprcMKO ). We showed that, similar to Nprc null mice, NprcAKO mice, but not NprcMKO mice, were resistant to obesity induced by a high-fat diet. NprcAKO mice exhibited increased energy expenditure, improved insulin sensitivity, and increased glucose uptake into brown fat. These mice were also protected from diet-induced hepatic steatosis and visceral fat inflammation. These findings support the conclusion that NPRC in adipose tissue is a critical regulator of energy metabolism and suggest that inhibiting this receptor may be an important avenue to explore for combating metabolic disease.


Assuntos
Tecido Adiposo/metabolismo , Gorduras na Dieta/efeitos adversos , Resistência à Insulina , Obesidade , Receptores do Fator Natriurético Atrial , Transdução de Sinais , Tecido Adiposo/patologia , Animais , Gorduras na Dieta/farmacologia , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Cardiovasc Res ; 113(8): 915-925, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379313

RESUMO

BACKGROUND: Dilated cardiomoypathies (DCM) are a heterogeneous group of inherited and acquired diseases characterized by decreased contractility and enlargement of cardiac chambers and a major cause of morbidity and mortality. Mice with Glu54Lys mutation in α-tropomyosin (Tm54) demonstrate typical DCM phenotype with reduced myofilament Ca2+ sensitivity. We tested the hypothesis that early sensitization of the myofilaments to Ca2+ in DCM can prevent the DCM phenotype. METHODS AND RESULTS: To sensitize Tm54 myofilaments, we used a genetic approach and crossbred Tm54 mice with mice expressing slow skeletal troponin I (ssTnI) that sensitizes myofilaments to Ca2+. Four groups of mice were used: non-transgenic (NTG), Tm54, ssTnI and Tm54/ssTnI (DTG). Systolic function was significantly reduced in the Tm54 mice compared to NTG, but restored in DTG mice. Tm54 mice also showed increased diastolic LV dimensions and HW/BW ratios, when compared to NTG, which were improved in the DTG group. ß-myosin heavy chain expression was increased in the Tm54 animals compared to NTG and was partially restored in DTG group. Analysis by 2D-DIGE indicated a significant decrease in two phosphorylated spots of cardiac troponin I (cTnI) in the DTG animals compared to NTG and Tm54. Analysis by 2D-DIGE also indicated no significant changes in troponin T, regulatory light chain, myosin binding protein C and tropomyosin phosphorylation. CONCLUSION: Our data indicate that decreased myofilament Ca2+ sensitivity is an essential element in the pathophysiology of thin filament linked DCM. Sensitization of myofilaments to Ca2+ in the early stage of DCM may be a useful therapeutic strategy in thin filament linked DCM.


Assuntos
Citoesqueleto de Actina/metabolismo , Cardiomiopatia Dilatada/genética , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos Transgênicos , Miocárdio/metabolismo , Fosforilação , Tropomiosina/metabolismo , Miosinas Ventriculares/genética
8.
Pharmacol Res Perspect ; 2(3)2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25197556

RESUMO

Inadequate control of serum phosphate in chronic kidney disease can lead to pathologies of clinical importance. Effectiveness of on-market phosphate binders is limited by safety concerns and low compliance due to high pill size/burden and gastrointestinal discomfort. VS-501 is a non-absorbed, calcium- and aluminum-free, chemically-modified, plant-derived polymer. In vitro studies show that VS-501 has a high density and a low swell volume when exposed to simulated gastric fluid (vs. sevelamer). When male Sprague Dawley (SD) rats on normal diet were treated with VS-501 or sevelamer, serum phosphate was not significantly altered, but urinary phosphate levels decreased by >90%. VS-501 had no effect on serum calcium (Ca) or urinary Ca, while 3% sevelamer significantly increased serum and urine Ca. In 5/6 nephrectomized (NX) uremic SD rats on high-phosphate diet, increasing dietary phosphate led to an increase in serum and urine phosphate, which was prevented in rats treated with VS-501 or sevelamer (0.2-5% in food). High phosphate diet also increased serum FGF-23 and parathyroid hormone in 5/6 NX rats, which was prevented by VS-501 or sevelamer. VS-501 or sevelamer increased fecal phosphate in a dose-dependent manner. More aortic calcification was observed in 5/6 NX rats treated with 5% sevelamer, while VS-501 and sevelamer did not show significant effects on cardiac parameters, fibrosis, intestine histology and intestinal sodium-dependent phosphate cotransporter gene expression. These results suggest that VS-501 is effective in binding phosphate with no effects on calcium homeostasis, and may have improved pill burden and gastrointestinal side effects.

9.
Circ Cardiovasc Genet ; 7(2): 132-143, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24585742

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common genetic disorder caused mainly by mutations in sarcomeric proteins and is characterized by maladaptive myocardial hypertrophy, diastolic heart failure, increased myofilament Ca(2+) sensitivity, and high susceptibility to sudden death. We tested the following hypothesis: correction of the increased myofilament sensitivity can delay or prevent the development of the HCM phenotype. METHODS AND RESULTS: We used an HCM mouse model with an E180G mutation in α-tropomyosin (Tm180) that demonstrates increased myofilament Ca(2+) sensitivity, severe hypertrophy, and diastolic dysfunction. To test our hypothesis, we reduced myofilament Ca(2+) sensitivity in Tm180 mice by generating a double transgenic mouse line. We crossed Tm180 mice with mice expressing a pseudophosphorylated cardiac troponin I (S23D and S24D; TnI-PP). TnI-PP mice demonstrated a reduced myofilament Ca(2+) sensitivity compared with wild-type mice. The development of pathological hypertrophy did not occur in mice expressing both Tm180 and TnI-PP. Left ventricle performance was improved in double transgenic compared with their Tm180 littermates, which express wild-type cardiac troponin I. Hearts of double transgenic mice demonstrated no changes in expression of phospholamban and sarcoplasmic reticulum Ca(2+) ATPase, increased levels of phospholamban and troponin T phosphorylation, and reduced phosphorylation of TnI compared with Tm180 mice. Moreover, expression of TnI-PP in Tm180 hearts inhibited modifications in the activity of extracellular signal-regulated kinase and zinc finger-containing transcription factor GATA in Tm180 hearts. CONCLUSIONS: Our data strongly indicate that reduction of myofilament sensitivity to Ca(2+) and associated correction of abnormal relaxation can delay or prevent development of HCM and should be considered as a therapeutic target for HCM.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miofibrilas/metabolismo , Tropomiosina/genética , Troponina I/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Hipertrófica/terapia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fosforilação , Tropomiosina/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 291(2): H552-63, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16501024

RESUMO

The ends of striated muscle tropomyosin (TM) are integral for thin filament cooperativity, determining the cooperative unit size and regulating the affinity of TM for actin. We hypothesized that altering the alpha-TM carboxy terminal overlap end to the beta-TM counterpart would affect the amino-terminal association, which would alter the end-to-end interactions of TM molecules in the thin filament regulatory strand and affect the mechanisms of cardiac muscle contraction. To test this hypothesis, we generated transgenic (TG) mouse lines that express a mutant form of alpha-TM in which the first 275 residues are from alpha-TM and the last nine amino acids are from beta-TM (alpha-TM9aaDeltabeta). Molecular analyses show that endogenous alpha-TM mRNA and protein are nearly completely replaced with alpha-TM9aaDeltabeta. Working heart preparations data show that the rates of contraction and relaxation are reduced in alpha-TM9aaDeltabeta hearts. Left ventricular pressure and time to peak pressure are also reduced (-12% and -13%, respectively). The ratio of maximum to minimum first derivatives of change in left ventricular systolic pressure with respect to time (ratio of +dP/dt to -dP/dt, respectively) is increased, but tau is not changed significantly. Force-intracellular calcium concentration ([Ca2+]i) measurements from intact papillary fibers demonstrate that alpha-TM9aaDeltabeta TG fibers produce less force per given [Ca2+]i compared with nontransgenic fibers. Taken together, the data demonstrate that the rate of contraction is primarily affected in TM TG hearts. Protein docking studies show that in the mutant molecule, the overall carbon backbone is perturbed about 1.5 A, indicating that end-to-end interactions are altered. These results demonstrate that the localized flexibility present in the coiled-coil structures of TM isoforms is different, and that plays an important role in interacting with neighboring thin filament regulatory proteins and with differentially modulating the myofilament activation processes.


Assuntos
Coração/fisiologia , Contração Miocárdica/fisiologia , Tropomiosina/fisiologia , Citoesqueleto de Actina/fisiologia , Aminoácidos/metabolismo , Animais , Southern Blotting , Western Blotting , Cálcio/metabolismo , Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Eletroforese em Gel de Poliacrilamida , Frequência Cardíaca/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Proteínas Musculares/metabolismo , Mutação/fisiologia , Músculos Papilares/fisiologia , Conformação Proteica , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Tropomiosina/genética , Função Ventricular Esquerda/fisiologia
11.
J Physiol ; 564(Pt 2): 603-17, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15718258

RESUMO

Integrins are considered to be an important mechanosensor in cardiac myocytes. To test whether integrins can influence cardiac contractile function, the force-frequency relationships of mouse papillary muscle bundles were measured in the presence or absence of a synthetic integrin-binding peptide, GRGDNP (gly-arg-gly-asp-asn-pro). Results demonstrate that in the presence of an arginine-glycine-aspartic acid (RGD)-containing synthetic peptide, contractile force was depressed significantly by, 28% at 4 Hz, 37.7% at 5 Hz and 20% at 10 Hz (n = 6, P < 0.01). Treatment of myofibres with either protease-generated fragments of denatured collagen (Type I) or denatured collagen that contain the RGD motif, also reduced force production significantly. An integrin-activating antibody for beta(1) integrin inhibited the force similar to synthetic RGD peptide. Function-blocking integrin antibodies for alpha(5) and beta(1) integrins reversed the effect of the RGD-containing peptide, and alpha(5) integrin also reversed the effect of proteolytic fragments of denatured collagen on contractile force, whereas experiments with function-blocking antibody for beta(3) integrin did not reverse the effect of RGD peptide. Force-[Ca(2)(+)](i) measurements showed that the depressed rate of force generation observed in the presence of the RGD-containing peptide was associated with reduced [Ca(2)(+)](i). Data analyses further demonstrated that force per unit of Ca(2)(+) was reduced, suggesting that the myofilament activation process was altered. In addition, inhibition of PKC enzyme using the selective, cell-permeable inhibitor Ro-32-0432, reversed the activity of RGD peptide on papillary muscle bundles. In conclusion, these data indicate that RGD peptide, acting via alpha(5)beta(1) integrin, depresses the force production from papillary muscle bundles, partly associated with changes in [Ca(2)(+)](i) and the myofilament activation processes, that is modulated by PKCepsilon.


Assuntos
Integrina alfa5beta1/biossíntese , Contração Muscular/fisiologia , Oligopeptídeos/farmacologia , Músculos Papilares/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Técnicas In Vitro , Integrina alfa5beta1/genética , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Músculos Papilares/metabolismo
12.
J Physiol ; 558(Pt 3): 927-41, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15194741

RESUMO

A normal heart increases its contractile force with increasing heart rate. Although calcium handling and myofibrillar proteins have been implicated in maintaining this positive force-frequency relationship (FFR), the exact mechanisms by which it occurs have not been addressed. In this study, we have developed an analytical method to define the calcium-force loop data, which characterizes the function of the contractile proteins in response to calcium that is independent of the calcium handling proteins. Results demonstrate that increasing the stimulation frequency causes increased force production per unit calcium concentration and decreased frequency-dependent calcium sensitivity during the relaxation phase. We hypothesize that phosphorylation of myosin binding protein-C (MyBP-C) and troponin I (TnI) acts coordinately to change the rates of force generation and relaxation, respectively. To test this hypothesis, we performed simultaneous calcium and force measurements on stimulated intact mouse papillary bundles before and after inhibition of MyBP-C and TnI phosphorylation using the calcium/calmodulin kinase II (CaMK2) inhibitor autocamtide-2 related inhibitory peptide, or the protein kinase A (PKA) inhibitor 14-22 amide. CaMK2 inhibition reduced both MyBP-C and TnI phosphorylation and decreased active force without changing the magnitude of the [Ca(2+)](i) transient. This reduced the normalized change in force per change in calcium by 19-39%. Data analyses demonstrated that CaMK2 inhibition changed the myofilament characteristics via a crossbridge feedback mechanism. These results strongly suggest that the phosphorylation of MyBP-C and TnI contributes significantly to the rates of force development and relaxation.


Assuntos
Proteínas de Transporte/metabolismo , Contração Miocárdica/fisiologia , Troponina I/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteínas de Transporte/fisiologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Troponina I/fisiologia
13.
J Physiol ; 561(Pt 3): 777-91, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15486021

RESUMO

Two important charge differences between the alpha- and beta-tropomyosin (TM) isoforms are the exchange of a serine residue in the inner-core region at position 229, and a histidine residue at the carboxy-terminal end at position 276, with glutamic acid and asparagine, respectively. We have recently shown that altering these two residues in alpha-TM to their beta-TM counterparts in transgenic (TG) mouse hearts causes a depression in both +dP/dt and -dP/dt and a decrease in calcium sensitivity. In this study, we address whether independent charge changes at these two residues in alpha-TM modulate cardiac function differentially. To test this hypothesis we generated two TG lines: alpha-TMSer229Glu and alpha-TMHis276Asn. Molecular analyses show that 98% of native alpha-TM is replaced by mutated protein in alpha-TM229 hearts whereas alpha-TM276 hearts show 82% replacement with the mutated protein. Isolated working heart data show that alpha-TM229 TG hearts exhibit a significant decrease in both +dP/dt (7%) and -dP/dt (8%) compared with nontransgenics (NTGs) and time to peak pressure (TPP) is also reduced in alpha-TM229 hearts. alpha-TM276 hearts show a decrease only in -dP/dt (14%) and TPP is increased. pCa(2+)-tension relationships in skinned fibre preparations indicate decreased calcium sensitivity in alpha-TM229 but no change in alpha-TM276 preparations. Force-[Ca(2+)](IC) measurements from intact papillary fibres indicate that alpha-TM276 fibres produce more force per given [Ca(2+)](IC) when compared to NTG fibres, while alpha-TM229 fibres produce less force per given [Ca(2+)](IC). These data demonstrate that changing charged residues at either the inner-core domain or the carboxyl end of TM alters sarcomeric performance differently, suggesting that the function of TM is compartmentalized along its length.


Assuntos
Contração Miocárdica/fisiologia , Tropomiosina/fisiologia , Animais , Cálcio/fisiologia , Expressão Gênica , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Contração Miocárdica/genética , Miocárdio/patologia , Fenótipo , Tropomiosina/química , Tropomiosina/genética
14.
J Physiol ; 556(Pt 2): 531-43, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14766940

RESUMO

Striated muscle tropomyosin (TM) is an essential thin filament protein that is sterically and allosterically involved in calcium-mediated cardiac contraction. We have previously shown that overexpressing the beta-TM isoform in mouse hearts leads to physiological changes in myocardial relaxation and Ca(2+) handling of myofilaments. Two important charge differences in beta-TM compared to alpha-TM are the exchange of serine and histidine at positions 229 and 276 with glutamic acid and asparagine, respectively, imparting a more negative charge to beta-TM relative to alpha-TM. Our hypothesis is that the net charge at specific sites on TM might be a major determinant of its role in modulating cardiac muscle performance and in regulating Ca(2+) sensitivity of the myofilaments. To address this, we generated transgenic (TG) double mutation mouse lines (alpha-TM DM) expressing mutated alpha-TM at the two residues that differ between alpha- and beta-TM (Ser229Glu + His276Asn). Molecular analyses show 60-88% of the native TM is replaced with alpha-TM DM in the different TG lines. Work-performing heart analyses show that alpha-TM DM mouse hearts exhibit decreased rates of pressure development and relaxation (+dP/dt and -dP/dt). Skinned myofibre preparations from the TG hearts indicate a decrease in calcium sensitivity of steady state force. Protein modelling studies show that these two charge alterations in alpha-TM cause a change in the surface charges of the molecule. Our results provide the first evidence that charge changes at the carboxy-terminal of alpha-TM alter the functional characteristics of the heart at both the whole organ and myofilament levels.


Assuntos
Contração Miocárdica/fisiologia , Tropomiosina/genética , Tropomiosina/metabolismo , Citoesqueleto de Actina/fisiologia , Animais , Cálcio/metabolismo , Eletroquímica , Frequência Cardíaca/fisiologia , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Tropomiosina/química , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA