Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 150(16): 164304, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31042884

RESUMO

The combined results of ab initio electronic-structure calculations, nonadiabatic molecular dynamics simulations using ab initio multiple spawning, and previous spectroscopic investigations of jet-cooled molecules provide strong evidence of a (π,σ*)-mediated decomposition mechanism for the furazan and triazole energetic molecules. The importance of dissociative excited states formed by electron promotion from a π molecular orbital to a σ* molecular orbital is explored for the furazan and triazole energetic molecules. Dissociative (π,σ*) states of furazan and triazole energetic molecules can be populated by nonadiabatic surface jump from the (π,π*) or the (n,π*) state. Finally, conical intersections between (π,σ*) potential energy surfaces (PESs) and the ground PES influence the eventual fragmentation dynamics of the furazan and triazole energetic molecules. Due to structural similarity of the triazole molecule with the pyrrole molecule, a comparison of nonadiabatic dynamics of these two molecules is also presented. The N-N bond dissociation is found to be a barrierless pathway for the triazole molecule, whereas the N-H bond dissociation exhibits a barrierless pathway for the pyrrole molecule. The present work, thus, provides insights into the excited-state chemistry of furazan and triazole energetic functional groups. The same insight can also be relevant for other energetic molecules.

2.
J Chem Phys ; 147(20): 204302, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29195277

RESUMO

Energetic materials store a large amount of chemical energy. Different ignition processes, including laser ignition and shock or compression wave, initiate the energy release process by first promoting energetic molecules to the electronically excited states. This is why a full understanding of initial steps of the chemical dynamics of energetic molecules from the excited electronic states is highly desirable. In general, conical intersection (CI), which is the crossing point of multidimensional electronic potential energy surfaces, is well established as a controlling factor in the initial steps of chemical dynamics of energetic molecules following their electronic excitations. In this article, we have presented different aspects of the ultrafast unimolecular relaxation dynamics of energetic molecules through CIs. For this task, we have employed ab initio multiple spawning (AIMS) simulation using the complete active space self-consistent field (CASSCF) electronic wavefunction and frozen Gaussian-based nuclear wavefunction. The AIMS simulation results collectively reveal that the ultrafast relaxation step of the best energetic molecules (which are known to exhibit very good detonation properties) is completed in less than 500 fs. Many, however, exhibit sub-50 fs dynamics. For example, nitro-containing molecules (including C-NO2, N-NO2, and O-NO2 active moieties) relax back to the ground state in approximately 40 fs through similar (S1/S0)CI conical intersections. The N3-based energetic molecule undergoes the N2 elimination process in 40 fs through the (S1/S0)CI conical intersection. Nitramine-Fe complexes exhibit sub-50 fs Fe-O and N-O bond dissociation through the respective (S1/S0)CI conical intersection. On the other hand, tetrazine-N-oxides, which are known to exhibit better detonation properties than tetrazines, undergo internal conversion in a 400-fs time scale, while the relaxation time of tetrazine is very long (about 100 ns). Many other characteristics of sub-500 fs nonadiabatic decay of energetic molecules are discussed. In the end, many unresolved issues associated with the ultrafast nonadiabatic chemical dynamics of energetic molecules are presented.

3.
Chem Sci ; 15(9): 3300-3310, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425509

RESUMO

This work presents a spectroscopic and photocatalytic comparison of water splitting using yttrium iron garnet (Y3Fe5O12, YIG) and hematite (α-Fe2O3) photoanodes. Despite similar electronic structures, YIG significantly outperforms widely studied hematite, displaying more than an order of magnitude increase in photocurrent density. Probing the charge and spin dynamics by ultrafast, surface-sensitive XUV spectroscopy reveals that the enhanced performance arises from (1) reduced polaron formation in YIG compared to hematite and (2) an intrinsic spin polarization of catalytic photocurrents in YIG. Ultrafast XUV measurements show a reduction in the formation of surface electron polarons compared to hematite due to site-dependent electron-phonon coupling. This leads to spin polarized photocurrents in YIG where efficient charge separation occurs on the Td sub-lattice compared to fast trapping and electron/hole pair recombination on the Oh sub-lattice. These lattice-dependent dynamics result in a long-lived spin aligned hole population at the YIG surface, which is directly observed using XUV magnetic circular dichroism. Comparison of the Fe M2,3 and O L1-edges show that spin aligned holes are hybridized between O 2p and Fe 3d valence band states, and these holes are responsible for highly efficient, spin selective water oxidation by YIG. Together, these results point to YIG as a new platform for highly efficient, spin selective photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA