Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Physiol Rev ; 103(1): 433-513, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35951482

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of disorders characterized by early-onset, often severe epileptic seizures and EEG abnormalities on a background of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result from both nongenetic and genetic etiologies. Genetic DEEs have been associated with mutations in many genes involved in different functions including cell migration, proliferation, and organization, neuronal excitability, and synapse transmission and plasticity. Functional studies performed in different animal models and clinical trials on patients have contributed to elucidate pathophysiological mechanisms underlying many DEEs and have explored the efficacy of different treatments. Here, we provide an extensive review of the phenotypic spectrum included in the DEEs and of the genetic determinants and pathophysiological mechanisms underlying these conditions. We also provide a brief overview of the most effective treatment now available and of the emerging therapeutic approaches.


Assuntos
Epilepsia , Animais , Epilepsia/genética , Heterogeneidade Genética , Mutação
2.
Epilepsia ; 65(8): 2238-2247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829313

RESUMO

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.


Assuntos
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Epilepsia/genética , Neuroimagem/métodos
3.
Epilepsia ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042520

RESUMO

Epilepsy has a peak incidence during the neonatal to early childhood period. These early onset epilepsies may be severe conditions frequently associated with comorbidities such as developmental deficits and intellectual disability and, in a significant percentage of patients, may be medication-resistant. The use of adult rodent models in the exploration of mechanisms and treatments for early life epilepsies is challenging, as it ignores significant age-specific developmental differences. More recently, models developed in immature animals, such as rodent pups, or in three-dimensional organoids may more closely model aspects of the immature brain and could result in more translatable findings. Although models are not perfect, they may offer a more controlled screening platform in studies of mechanisms and treatments, which cannot be done in pediatric patient cohorts. On the other hand, more simplified models with higher throughput capacities are required to deal with the large number of epilepsy candidate genes and the need for new treatment options. Therefore, a combination of different modeling approaches will be beneficial in addressing the unmet needs of pediatric epilepsy patients. In this review, we summarize the discussions on this topic that occurred during the XVI Workshop on Neurobiology of Epilepsy, organized in 2022 by the Neurobiology Commission of the International League Against Epilepsy. We provide an overview of selected models of early onset epilepsies, discussing their advantages and disadvantages. Heterologous expression models provide initial functional insights, and zebrafish, rodent models, and brain organoids present increasingly complex platforms for modeling and validating epilepsy-related phenomena. Together, these models offer valuable insights into early onset epilepsies and accelerate hypothesis generation and therapy discovery.

4.
Epilepsia ; 65(3): 533-541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279786

RESUMO

A variety of terms, such as "antiepileptic," "anticonvulsant," and "antiseizure" have been historically applied to medications for the treatment of seizure disorders. Terminology is important because using terms that do not accurately reflect the action of specific treatments may result in a misunderstanding of their effects and inappropriate use. The present International League Against Epilepsy (ILAE) position paper used a Delphi approach to develop recommendations on English-language terminology applicable to pharmacological agents currently approved for treating seizure disorders. There was consensus that these medications should be collectively named "antiseizure medications". This term accurately reflects their primarily symptomatic effect against seizures and reduces the possibility of health care practitioners, patients, or caregivers having undue expectations or an incorrect understanding of the real action of these medications. The term "antiseizure" to describe these agents does not exclude the possibility of beneficial effects on the course of the disease and comorbidities that result from the downstream effects of seizures, whenever these beneficial effects can be explained solely by the suppression of seizure activity. It is acknowledged that other treatments, mostly under development, can exert direct favorable actions on the underlying disease or its progression, by having "antiepileptogenic" or "disease-modifying" effects. A more-refined terminology to describe precisely these actions needs to be developed.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Anticonvulsivantes/uso terapêutico , Terapia Comportamental , Consenso , Cuidadores
5.
J Pharmacol Exp Ther ; 386(2): 259-265, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316328

RESUMO

Post-traumatic epilepsy (PTE) occurs in some patients after moderate/severe traumatic brain injury (TBI). Although there are no approved therapies to prevent epileptogenesis, levetiracetam (LEV) is commonly given for seizure prophylaxis due to its good safety profile. This led us to study LEV as part of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Project. The objective of this work is to characterize the pharmacokinetics (PK) and brain uptake of LEV in naïve control rats and in the lateral fluid percussion injury (LFPI) rat model of TBI after either single intraperitoneal doses or a loading dose followed by a 7-day subcutaneous infusion. Sprague-Dawley rats were used as controls and for the LFPI model induced at the left parietal region using injury parameters optimized for moderate/severe TBI. Naïve and LFPI rats received either a bolus injection (intraperitoneal) or a bolus injection followed by subcutaneous infusion over 7 days. Blood and parietal cortical samples were collected at specified time points throughout the study. LEV concentrations in plasma and brain were measured using validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods. Noncompartmental analysis and a naive-pooled compartmental PK modeling approach were used. Brain-to-plasma ratios ranged from 0.54 to 1.4 to 1. LEV concentrations were well fit by one-compartment, first-order absorption PK models with a clearance of 112 ml/h per kg and volume of distribution of 293 ml/kg. The single-dose pharmacokinetic data were used to guide dose selection for the longer-term studies, and target drug exposures were confirmed. Obtaining LEV PK information early in the screening phase allowed us to guide optimal treatment protocols in EpiBioS4Rx. SIGNIFICANCE STATEMENT: The characterization of levetiracetam pharmacokinetics and brain uptake in an animal model of post-traumatic epilepsy is essential to identify target concentrations and guide optimal treatment for future studies.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Ratos , Animais , Levetiracetam , Epilepsia Pós-Traumática/tratamento farmacológico , Percussão , Espectrometria de Massas em Tandem , Ratos Sprague-Dawley , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
6.
Epilepsia ; 64(11): 2891-2908, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676719

RESUMO

Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estados Unidos , Epilepsia/tratamento farmacológico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Resistência a Medicamentos , Comitês Consultivos , Incidência
7.
Epilepsia ; 63(7): 1835-1848, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366338

RESUMO

OBJECTIVE: We examined whether posttraumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS: Adult Sprague Dawley rats were subjected to lateral fluid percussion injury (LFPI). PTE was examined 7 months after LFPI, during 4-week continuous video-electroencephalographic monitoring. 16S ribosomal RNA gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 month, and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFAs) were measured in fecal samples collected before LFPI by liquid chromatography with tandem mass spectrometry. RESULTS: Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE, with area under the curve (AUC) of .73. Global SCFA content was associated with the increased risk of PTE, with AUC of .722, and with 2-methylbutyric (depleted), valeric (depleted), isobutyric (enriched), and isovaleric (enriched) acids being the most important factors (AUC = .717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to .78. SIGNIFICANCE: Whereas LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Microbioma Gastrointestinal , Animais , Lesões Encefálicas Traumáticas/complicações , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Humanos , Ratos , Ratos Sprague-Dawley
8.
Epilepsia ; 62(8): 1985-1999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34212374

RESUMO

OBJECTIVE: Infantile spasms may evolve into persistent epilepsies including Lennox-Gastaut syndrome. We compared adult epilepsy outcomes in models of infantile spasms due to structural etiology (multiple-hit model) or focal cortical inflammation and determined the anti-epileptogenic effects of pulse-rapamycin, previously shown to stop spasms in multiple-hit rats. METHODS: Spasms were induced in 3-day-old male rats via right intracerebral doxorubicin/lipopolysaccharide (multiple-hit model) infusions. Controls and sham rats were used. Separate multiple-hit rats received pulse-rapamycin or vehicle intraperitoneally between postnatal days 4 and 6. In adult mice, video-EEG (electroencephalography) scoring for seizures and sleep and histology were done blinded to treatment. RESULTS: Motor-type seizures developed in 66.7% of multiple-hit rats, usually from sleep, but were reduced in the pulse-rapamycin-treated group (20%, p = .043 vs multiple-hit) and rare in other groups (0-9.1%, p < .05 vs multiple-hit). Spike-and-wave bursts had a slower frequency in multiple-hit rats (5.4-5.8Hz) than in the other groups (7.6-8.3Hz) (p < .05); pulse rapamycin had no effect on the hourly spike-and-wave burst rates in adulthood. Rapamycin, however, reduced the time spent in slow-wave-sleep (17.2%), which was increased in multiple-hit rats (71.6%, p = .003). Sham rats spent more time in wakefulness (43.7%) compared to controls (30.6%, p = .043). Multiple-hit rats, with or without rapamycin treatment, had right more than left corticohippocampal, basal ganglia lesions. There was no macroscopic pathology in the other groups. SIGNIFICANCE: Structural corticohippocampal/basal ganglia lesions increase the risk for post-infantile spasms epilepsy, Lennox-Gastaut syndrome features, and sleep dysregulation. Pulse rapamycin treatment for infantile spasms has anti-epileptogenic effects, despite the structural lesions, and decreases the time spent in slow wave sleep.


Assuntos
Epilepsia , Síndrome de Lennox-Gastaut , Espasmo , Animais , Modelos Animais de Doenças , Eletroencefalografia , Masculino , Camundongos , Ratos , Convulsões , Sirolimo
9.
Epilepsia ; 62(1): 41-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258109

RESUMO

OBJECTIVE: Our epilepsy population recently experienced the acute effects of the COVID-19 pandemic in New York City. Herein, we aimed to determine patient-perceived seizure control during the surge, specific variables associated with worsened seizures, the prevalence of specific barriers to care, and patient-perceived efficacy of epilepsy care delivered via telephone and live video visits during the pandemic. METHODS: We performed a cross-sectional questionnaire study of adult epilepsy patients who had a scheduled appointment at a single urban Comprehensive Epilepsy Center (Montefiore Medical Center) between March 1, 2020 and May 31, 2020 during the peak of the COVID-19 pandemic in the Bronx. Subjects able to answer the questionnaire themselves in English or Spanish were eligible to complete a one-time survey via telephone or secure online platform (REDCap). RESULTS: Of 1212 subjects screened, 675 were eligible, and 177 adequately completed the questionnaire. During the COVID-19 pandemic, 75.1% of patients reported no change in seizure control, whereas 17.5% reported that their seizure control had worsened, and 7.3% reported improvement. Subjects who reported worsened seizure control had more frequent seizures at baseline, were more likely to identify stress and headaches/migraines as their typical seizure precipitants, and were significantly more likely to report increased stress related to the pandemic. Subjects with confirmed or suspected COVID-19 did not report worsened seizure control. Nearly 17% of subjects reported poorer epilepsy care, and 9.6% had difficulty obtaining their antiseizure medications; these subjects were significantly more likely to report worse seizure control. SIGNIFICANCE: Of the nearly 20% of subjects who reported worsened seizure control during the COVID-19 pandemic, stress and barriers to care appear to have posed the greatest challenge. This unprecedented pandemic exacerbated existing and created new barriers to epilepsy care, which must be addressed.


Assuntos
Atitude Frente a Saúde , COVID-19/complicações , COVID-19/psicologia , Epilepsia/psicologia , Epilepsia/terapia , Acessibilidade aos Serviços de Saúde , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , População Urbana , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticonvulsivantes/uso terapêutico , Estudos Transversais , Epilepsia/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Satisfação do Paciente , Consulta Remota , Inquéritos e Questionários , Resultado do Tratamento , Adulto Jovem
10.
Neurobiol Dis ; 123: 86-99, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29936231

RESUMO

Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Epilepsia Pós-Traumática/terapia , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/metabolismo , Humanos , Transdução de Sinais
12.
Epilepsia ; 58 Suppl 4: 7-9, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29105072

RESUMO

Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals.


Assuntos
Epilepsia/terapia , Cooperação Internacional , Sociedades Médicas , Pesquisa Translacional Biomédica , Comitês Consultivos , Animais , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Londres , Gravação em Vídeo
13.
Epilepsia ; 58 Suppl 3: 39-47, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28675559

RESUMO

Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms.


Assuntos
Infecções por Cardiovirus/imunologia , Modelos Animais de Doenças , Epilepsia/imunologia , Inflamação Neurogênica/tratamento farmacológico , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/imunologia , Theilovirus , Pesquisa Translacional Biomédica , Animais , Anticonvulsivantes/uso terapêutico , Descoberta de Drogas , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/imunologia , Epilepsia/tratamento farmacológico , Humanos , Lactente , Mediadores da Inflamação/fisiologia , Camundongos , Inflamação Neurogênica/imunologia , Ratos
14.
Epilepsia ; 58 Suppl 4: 78-86, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29105074

RESUMO

The major objective of preclinical translational epilepsy research is to advance laboratory findings toward clinical application by testing potential treatments in animal models of seizures and epilepsy. Recently there has been a focus on the failure of preclinical discoveries to translate reliably, or even to be reproduced in different laboratories. One potential cause is a lack of standardization in preclinical data collection. The resulting difficulties in comparing data across studies have led to high cost and missed opportunity, which in turn impede clinical trials and advances in medical care. Preclinical epilepsy research has successfully brought numerous antiseizure treatments into the clinical practice, yet the unmet clinical needs have prompted the reconsideration of research strategies to optimize epilepsy therapy development. In the field of clinical epilepsy there have been successful steps to improve such problems, such as generation of common data elements (CDEs) and case report forms (CRFs and standards of data collection and reporting) by a team of leaders in the field. Therefore, the Translational Task Force was appointed by the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES), in partnership with the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institutes of Health (NIH) to define CDEs for animal epilepsy research studies and prepare guidelines for data collection and experimental procedures. If adopted, the preclinical CDEs could facilitate collaborative epilepsy research, comparisons of data across different laboratories, and promote rigor, transparency, and impact, particularly in therapy development.


Assuntos
Comitês Consultivos , Elementos de Dados Comuns/normas , Epilepsia/diagnóstico , Epilepsia/terapia , Pesquisa Translacional Biomédica/normas , Animais , Coleta de Dados , Modelos Animais de Doenças , Humanos , Cooperação Internacional , National Institute of Neurological Disorders and Stroke (USA) , Sociedades Científicas/normas , Pesquisa Translacional Biomédica/métodos , Estados Unidos
15.
Epilepsia ; 58 Suppl 4: 53-67, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29105070

RESUMO

Electroencephalography (EEG)-the direct recording of the electrical activity of populations of neurons-is a tremendously important tool for diagnosing, treating, and researching epilepsy. Although standard procedures for recording and analyzing human EEG exist and are broadly accepted, there are no such standards for research in animal models of seizures and epilepsy-recording montages, acquisition systems, and processing algorithms may differ substantially among investigators and laboratories. The lack of standard procedures for acquiring and analyzing EEG from animal models of epilepsy hinders the interpretation of experimental results and reduces the ability of the scientific community to efficiently translate new experimental findings into clinical practice. Accordingly, the intention of this report is twofold: (1) to review current techniques for the collection and software-based analysis of neural field recordings in animal models of epilepsy, and (2) to offer pertinent standards and reporting guidelines for this research. Specifically, we review current techniques for signal acquisition, signal conditioning, signal processing, data storage, and data sharing, and include applicable recommendations to standardize collection and reporting. We close with a discussion of challenges and future opportunities, and include a supplemental report of currently available acquisition systems and analysis tools. This work represents a collaboration on behalf of the American Epilepsy Society/International League Against Epilepsy (AES/ILAE) Translational Task Force (TASK1-Workgroup 5), and is part of a larger effort to harmonize video-EEG interpretation and analysis methods across studies using in vivo and in vitro seizure and epilepsy models.


Assuntos
Comitês Consultivos , Encéfalo/fisiopatologia , Eletroencefalografia , Epilepsia/fisiopatologia , Software , Animais , Modelos Animais de Doenças , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Eletroencefalografia/normas , Software/normas
16.
Epilepsia ; 58 Suppl 4: 10-27, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29105073

RESUMO

In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia/normas , Processamento Eletrônico de Dados , Epilepsia/diagnóstico , Pesquisa Translacional Biomédica , Gravação em Vídeo/normas , Comitês Consultivos , Animais , Eletroencefalografia/métodos , Camundongos , Ratos , Sociedades Médicas/normas , Gravação em Vídeo/métodos
17.
Epilepsia ; 58(5): 882-892, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28397999

RESUMO

OBJECTIVE: We investigated temporal and spatial characteristics of ictal gamma and beta activity on scalp EEG during spasms in patients with West syndrome (WS) to evaluate potential focal cortical onset. METHODS: A total of 1,033 spasms from 34 patients with WS of various etiologies were analyzed on video-electroencephalography (EEG) using time-frequency analysis. Ictal gamma (35-90 Hz) and beta (15-30 Hz) activities were correlated with visual symmetry of spasms, objective EMG (electromyography) analysis, and etiology of WS. RESULTS: Prior to the ictal motor manifestation, focal ictal gamma activity emerged from one hemisphere (71%, 24/34) or from midline (26%, 9/34), and was rarely simultaneously bilateral (3%, 1/34). Focal ictal beta activity emerged from either one hemisphere (68%, 23/34) or from midline (32%, 11/34). Onsets of focal ictal gamma and beta activity were most commonly observed around the parietal areas. Focal ictal gamma activity propagated faster than ictal beta activity to adjacent electrodes (median: 65 vs. 170 msec, p < 0.01), and to contralateral hemisphere (median: 100 vs. 170 msec, p = 0.01). Asymmetric peak amplitude of ictal gamma activity in the centroparietal areas (C3-P3 vs. C4-P4) correlated with asymmetric semiology. On the other hand, most of the visually symmetric spasms showed asymmetry in peak amplitude and interhemispheric onset latency difference in both ictal gamma and beta activity. SIGNIFICANCE: Spasms may be a seizure with focal electrographic onset regardless of visual symmetry. Asymmetric involvement of ictal gamma activity to the centroparietal areas may determine the motor manifestations in WS. Scalp EEG ictal gamma and beta activity may be useful to demonstrate localized seizure onset in infants with WS.


Assuntos
Ritmo beta/fisiologia , Eletroencefalografia , Ritmo Gama/fisiologia , Polissonografia , Processamento de Sinais Assistido por Computador , Espasmos Infantis/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Dominância Cerebral/fisiologia , Eletromiografia , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Humanos , Lactente , Estudos Retrospectivos , Espasmos Infantis/diagnóstico , Gravação em Vídeo
18.
Epilepsia ; 58(3): 331-342, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035782

RESUMO

Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate with epilepsy-associated comorbidities. A reliable biomarker will allow a more accurate diagnosis and improved treatment of epilepsy-associated comorbidities.


Assuntos
Biomarcadores , Epilepsia/epidemiologia , Transtornos Mentais/epidemiologia , Doenças do Sistema Nervoso/epidemiologia , Animais , Comorbidade , Humanos , Neurobiologia
20.
Epilepsia ; 58 Suppl 4: 40-52, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29105075

RESUMO

In vitro preparations are a powerful tool to explore the mechanisms and processes underlying epileptogenesis and ictogenesis. In this review, we critically review the numerous in vitro methodologies utilized in epilepsy research. We provide support for the inclusion of detailed descriptions of techniques, including often ignored parameters with unpredictable yet significant effects on study reproducibility and outcomes. In addition, we explore how recent developments in brain slice preparation relate to their use as models of epileptic activity.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia/patologia , Técnicas In Vitro , Comitês Consultivos , Animais , Modelos Animais de Doenças , Feminino , Técnicas In Vitro/instrumentação , Técnicas In Vitro/métodos , Técnicas In Vitro/normas , Masculino , Técnicas de Cultura de Órgãos/métodos , Técnicas de Cultura de Órgãos/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA