Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794620

RESUMO

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fosforilação , RecQ Helicases/genética , Serina/metabolismo , Transativadores/genética , Transativadores/metabolismo
2.
Nucleic Acids Res ; 49(15): 8665-8683, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329458

RESUMO

The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclina C/genética , Quinase 8 Dependente de Ciclina/genética , Transcrição Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
Genes Dev ; 26(11): 1179-95, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661229

RESUMO

Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , DNA de Cadeia Simples/metabolismo , Histonas/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
J Biol Chem ; 291(2): 924-38, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26565020

RESUMO

Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response.


Assuntos
Autoantígenos/química , Autoantígenos/metabolismo , Domínios HMG-Box , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Montagem e Desmontagem da Cromatina , Sequência Conservada , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Deleção de Sequência , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25855810

RESUMO

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Complexo do Signalossomo COP9 , Linhagem Celular , Células Cultivadas , Proteínas Culina/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo
6.
Nature ; 462(7275): 935-9, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016603

RESUMO

DNA double-strand breaks (DSBs) are highly cytotoxic lesions that are generated by ionizing radiation and various DNA-damaging chemicals. Following DSB formation, cells activate the DNA-damage response (DDR) protein kinases ATM, ATR and DNA-PK (also known as PRKDC). These then trigger histone H2AX (also known as H2AFX) phosphorylation and the accumulation of proteins such as MDC1, 53BP1 (also known as TP53BP1), BRCA1, CtIP (also known as RBBP8), RNF8 and RNF168/RIDDLIN into ionizing radiation-induced foci (IRIF) that amplify DSB signalling and promote DSB repair. Attachment of small ubiquitin-related modifier (SUMO) to target proteins controls diverse cellular functions. Here, we show that SUMO1, SUMO2 and SUMO3 accumulate at DSB sites in mammalian cells, with SUMO1 and SUMO2/3 accrual requiring the E3 ligase enzymes PIAS4 and PIAS1. We also establish that PIAS1 and PIAS4 are recruited to damage sites via mechanisms requiring their SAP domains, and are needed for the productive association of 53BP1, BRCA1 and RNF168 with such regions. Furthermore, we show that PIAS1 and PIAS4 promote DSB repair and confer ionizing radiation resistance. Finally, we establish that PIAS1 and PIAS4 are required for effective ubiquitin-adduct formation mediated by RNF8, RNF168 and BRCA1 at sites of DNA damage. These findings thus identify PIAS1 and PIAS4 as components of the DDR and reveal how protein recruitment to DSB sites is controlled by coordinated SUMOylation and ubiquitylation.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Proteína BRCA1/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fosforilação , Proteínas Inibidoras de STAT Ativados/química , Proteínas Inibidoras de STAT Ativados/genética , Estrutura Terciária de Proteína , Proteína de Replicação A/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Nature ; 462(7275): 886-90, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016594

RESUMO

Mutations in BRCA1 are associated with a high risk of breast and ovarian cancer. BRCA1 participates in the DNA damage response and acts as a ubiquitin ligase. However, its regulation remains poorly understood. Here we report that BRCA1 is modified by small ubiquitin-like modifier (SUMO) in response to genotoxic stress, and co-localizes at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO-conjugating enzyme Ubc9. PIAS SUMO E3 ligases co-localize with and modulate SUMO modification of BRCA1, and are required for BRCA1 ubiquitin ligase activity in cells. In vitro SUMO modification of the BRCA1/BARD1 heterodimer greatly increases its ligase activity, identifying it as a SUMO-regulated ubiquitin ligase (SRUbL). Further, PIAS SUMO ligases are required for complete accumulation of double-stranded DNA (dsDNA) damage-repair proteins subsequent to RNF8 accrual, and for proficient double-strand break repair. These data demonstrate that the SUMOylation pathway plays a significant role in mammalian DNA damage response.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Inibidoras de STAT Ativados/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
EMBO J ; 29(18): 3130-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693977

RESUMO

The chromatin remodelling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a catalytic subunit of the NuRD transcriptional repressor complex. Here, we reveal novel functions for CHD4 in the DNA-damage response (DDR) and cell-cycle control. We show that CHD4 mediates rapid poly(ADP-ribose)-dependent recruitment of the NuRD complex to DNA-damage sites, and we identify CHD4 as a phosphorylation target for the apical DDR kinase ataxia-telangiectasia mutated. Functionally, we show that CHD4 promotes repair of DNA double-strand breaks and cell survival after DNA damage. In addition, we show that CHD4 acts as an important regulator of the G1/S cell-cycle transition by controlling p53 deacetylation. These results provide new insights into how the chromatin remodelling complex NuRD contributes to maintaining genome stability.


Assuntos
Autoantígenos/metabolismo , Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina , Dano ao DNA , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Autoantígenos/genética , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Histonas/fisiologia , Humanos , Imunoprecipitação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Camundongos Knockout , Fosforilação , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Nat Cell Biol ; 8(8): 870-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16862143

RESUMO

The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways. A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1beta, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription. In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1, or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromatina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Microscopia de Fluorescência , Mutação/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Zinostatina/farmacologia
10.
Sci Adv ; 9(49): eadl2108, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055822

RESUMO

The catalytic cycle of topoisomerase 2 (TOP2) enzymes proceeds via a transient DNA double-strand break (DSB) intermediate termed the TOP2 cleavage complex (TOP2cc), in which the TOP2 protein is covalently bound to DNA. Anticancer agents such as etoposide operate by stabilizing TOP2ccs, ultimately generating genotoxic TOP2-DNA protein cross-links that require processing and repair. Here, we identify RAD54 like 2 (RAD54L2) as a factor promoting TOP2cc resolution. We demonstrate that RAD54L2 acts through a novel mechanism together with zinc finger protein associated with tyrosyl-DNA phosphodiesterase 2 (TDP2) and TOP2 (ZATT/ZNF451) and independent of TDP2. Our work suggests a model wherein RAD54L2 recognizes sumoylated TOP2 and, using its ATPase activity, promotes TOP2cc resolution and prevents DSB exposure. These findings suggest RAD54L2-mediated TOP2cc resolution as a potential mechanism for cancer therapy resistance and highlight RAD54L2 as an attractive candidate for drug discovery.


Assuntos
Adutos de DNA , Proteínas de Ligação a DNA , Humanos , Adutos de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diester Fosfórico Hidrolases/genética , DNA Topoisomerases Tipo II/genética , DNA/genética , Instabilidade Genômica , DNA Helicases/genética
11.
Sci Rep ; 10(1): 2200, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042076

RESUMO

Over the past decades, there have been huge advances in understanding cellular responses to ionising radiation (IR) and DNA damage. These studies, however, were mostly executed with cell lines and mice using single or multiple acute doses of radiation. Hence, relatively little is known about how continuous exposure to low dose ionising radiation affects normal cells and organisms, even though our cells are constantly exposed to low levels of radiation. We addressed this issue by examining the consequences of exposing human primary cells to continuous ionising γ-radiation delivered at 6-20 mGy/h. Although these dose rates are estimated to inflict fewer than a single DNA double-strand break (DSB) per hour per cell, they still caused dose-dependent reductions in cell proliferation and increased cellular senescence. We concomitantly observed histone protein levels to reduce by up to 40%, which in contrast to previous observations, was not mainly due to protein degradation but instead correlated with reduced histone gene expression. Histone reductions were accompanied by enlarged nuclear size paralleled by an increase in global transcription, including that of pro-inflammatory genes. Thus, chronic irradiation, even at low dose-rates, can induce cell senescence and alter gene expression via a hitherto uncharacterised epigenetic route. These features of chronic radiation represent a new aspect of radiation biology.


Assuntos
Cromatina/efeitos da radiação , Expressão Gênica/efeitos da radiação , Histonas/efeitos da radiação , Animais , Linhagem Celular , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama , Histonas/genética , Humanos , Masculino , Camundongos , Cultura Primária de Células
12.
ACS Chem Biol ; 14(10): 2148-2154, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31525021

RESUMO

The Fanconi anemia pathway orchestrates the repair of DNA interstrand cross-links and stalled replication forks. A key step in this pathway is UBE2T and FANCL-dependent monoubiquitylation of the FANCD2-FANCI complex. The Fanconi anemia pathway represents an attractive therapeutic target, because activation of this pathway has been linked to chemotherapy resistance in several cancers. However, to date, very few selective inhibitors of ubiquitin conjugation pathways are known. By using a high-throughput screen-compatible assay, we have identified a small-molecule inhibitor of UBE2T/FANCL-mediated FANCD2 monoubiquitylation that sensitizes cells to the DNA cross-linking agent, carboplatin.


Assuntos
Proteína do Grupo de Complementação L da Anemia de Fanconi/antagonistas & inibidores , Anemia de Fanconi/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Linhagem Celular Tumoral , Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
13.
Nat Commun ; 10(1): 87, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622252

RESUMO

Mutations in the ATM tumor suppressor gene confer hypersensitivity to DNA-damaging chemotherapeutic agents. To explore genetic resistance mechanisms, we performed genome-wide CRISPR-Cas9 screens in cells treated with the DNA topoisomerase I inhibitor topotecan. Thus, we here establish that inactivating terminal components of the non-homologous end-joining (NHEJ) machinery or of the BRCA1-A complex specifically confer topotecan resistance to ATM-deficient cells. We show that hypersensitivity of ATM-mutant cells to topotecan or the poly-(ADP-ribose) polymerase (PARP) inhibitor olaparib reflects delayed engagement of homologous recombination at DNA-replication-fork associated single-ended double-strand breaks (DSBs), allowing some to be subject to toxic NHEJ. Preventing DSB ligation by NHEJ, or enhancing homologous recombination by BRCA1-A complex disruption, suppresses this toxicity, highlighting a crucial role for ATM in preventing toxic LIG4-mediated chromosome fusions. Notably, suppressor mutations in ATM-mutant backgrounds are different to those in BRCA1-mutant scenarios, suggesting new opportunities for patient stratification and additional therapeutic vulnerabilities for clinical exploitation.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA por Junção de Extremidades/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Ligase Dependente de ATP/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Topotecan/farmacologia , Topotecan/uso terapêutico
14.
Nat Biotechnol ; 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30480667

RESUMO

The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs. We performed the experiments in a range of genetic backgrounds and using alternative CRISPR-Cas9 reagents. In total, we gathered data for >109 mutational outcomes. The majority of reproducible mutations are insertions of a single base, short deletions or longer microhomology-mediated deletions. Each gRNA has an individual cell-line-dependent bias toward particular outcomes. We uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes. Improved understanding of sequence repair will allow better design of gene editing experiments.

15.
Nat Cell Biol ; 20(8): 954-965, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022119

RESUMO

BRCA1 deficiencies cause breast, ovarian, prostate and other cancers, and render tumours hypersensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. To understand the resistance mechanisms, we conducted whole-genome CRISPR-Cas9 synthetic-viability/resistance screens in BRCA1-deficient breast cancer cells treated with PARP inhibitors. We identified two previously uncharacterized proteins, C20orf196 and FAM35A, whose inactivation confers strong PARP-inhibitor resistance. Mechanistically, we show that C20orf196 and FAM35A form a complex, 'Shieldin' (SHLD1/2), with FAM35A interacting with single-stranded DNA through its C-terminal oligonucleotide/oligosaccharide-binding fold region. We establish that Shieldin acts as the downstream effector of 53BP1/RIF1/MAD2L2 to promote DNA double-strand break (DSB) end-joining by restricting DSB resection and to counteract homologous recombination by antagonizing BRCA2/RAD51 loading in BRCA1-deficient cells. Notably, Shieldin inactivation further sensitizes BRCA1-deficient cells to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumours might aid patient stratification and yield new treatment opportunities. Highlighting this potential, we document reduced SHLD1/2 expression in human breast cancers displaying intrinsic or acquired PARP-inhibitor resistance.


Assuntos
Proteína BRCA1/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Reparo do DNA por Junção de Extremidades , Resistencia a Medicamentos Antineoplásicos , Osteossarcoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas/metabolismo , Reparo de DNA por Recombinação , Animais , Proteína BRCA1/deficiência , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Células HEK293 , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Camundongos , Complexos Multiproteicos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 8(1): 374, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851861

RESUMO

Emerging data demonstrate homologous recombination (HR) defects in castration-resistant prostate cancers, rendering these tumours sensitive to PARP inhibition. Here we demonstrate a direct requirement for the androgen receptor (AR) to maintain HR gene expression and HR activity in prostate cancer. We show that PARP-mediated repair pathways are upregulated in prostate cancer following androgen-deprivation therapy (ADT). Furthermore, upregulation of PARP activity is essential for the survival of prostate cancer cells and we demonstrate a synthetic lethality between ADT and PARP inhibition in vivo. Our data suggest that ADT can functionally impair HR prior to the development of castration resistance and that, this potentially could be exploited therapeutically using PARP inhibitors in combination with androgen-deprivation therapy upfront in advanced or high-risk prostate cancer.Tumours with homologous recombination (HR) defects become sensitive to PARPi. Here, the authors show that androgen receptor (AR) regulates HR and AR inhibition activates the PARP pathway in vivo, thus inhibition of both AR and PARP is required for effective treatment of high risk prostate cancer.


Assuntos
Colágeno Tipo XI/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Mutações Sintéticas Letais , Colágeno Tipo XI/genética , Recombinação Homóloga , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais
17.
Oncogene ; 21(28): 4363-73, 2002 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12080467

RESUMO

The human genetic disorder ataxia-telangiectasia (A-T) is due to lack of functional ATM, a protein kinase which is involved in cellular responses to DNA double strand breaks (DSBs) and possibly other oxidative stresses, as well as in regulation of several fundamental cellular functions. Studies regarding responses in A-T cells to the induction of DSBs utilize ionizing radiation or radiomimetic chemicals, such as neocarzinostatin (NCS), which induce DNA DSBs. This critical DNA lesion activates many defense systems, such as the cell cycle checkpoints. The cell cycle is also regulated through a timed and coordinated degradation of regulatory proteins via the ubiquitin pathway. Our recent studies indicate that the ubiquitin pathway is influenced by the cellular redox status and that it is the major cellular pathway for removal of oxidized proteins. Accordingly, we hypothesized that the absence of a functional ATM protein might involve perturbations to the ubiquitin pathway as well. We show here that upon treatment with NCS, there was a transient 50-70% increase in endogenous ubiquitin conjugates in A-T and wt lymphoblastoid cells. Ubiquitin conjugation capabilities per se and levels of substrates for conjugation were also similarly enhanced in wt and A-T cells upon NCS treatment. We also compared the ubiquitination response in A-T and wt cells using H(2)O(2) as the stress, in view of preexisting evidence of the effects of H(2)O(2) on ubiquitination capabilities in other types of cells. As with NCS treatment, there was an approximately 45% increase in endogenous ubiquitin conjugates by 2-4 h after exposure to H(2)O(2). Both cell types showed a rapid 50-150% increase in de novo formed 125I-ubiquitin conjugates. As compared with wt cells, unexposed A-T cells had higher endogenous levels of conjugates and enhanced conjugation capability. However, A-T cells mounted a more muted ubiquitination response to the stress. The enhanced ubiquitin conjugation in unstressed A-T cells and attenuated ability of these cells to respond to stress are consistent with the A-T cells being under oxidative stress and with their having an 'aged' phenotype. The indication that ubiquitin conjugate levels and ubiquitin conjugation capabilities are enhanced upon oxidative stress without significant changes in GSSG/GSH ratios indicates that assays of ubiquitination provide a sensitive measure of cellular stress. The data also add support to the impression that potentiated ubiquitination response to mild oxidative stress is a generalizable phenomenon.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Ataxia Telangiectasia/metabolismo , Peróxido de Hidrogênio/farmacologia , Ligases/metabolismo , Linfócitos/efeitos dos fármacos , Ubiquitinas/metabolismo , Zinostatina/farmacologia , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Glutationa/metabolismo , Humanos , Linfócitos/metabolismo , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases
18.
Nat Cell Biol ; 17(11): 1458-1470, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26502057

RESUMO

Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Endodesoxirribonucleases , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Microscopia Confocal , Proteínas Nucleares/genética , Interferência de RNA , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
19.
Cell Rep ; 11(5): 704-14, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25921528

RESUMO

The activities of many DNA-repair proteins are controlled through reversible covalent modification by ubiquitin and ubiquitin-like molecules. Nonhomologous end-joining (NHEJ) is the predominant DNA double-strand break (DSB) repair pathway in mammalian cells and is initiated by DSB ends being recognized by the Ku70/Ku80 (Ku) heterodimer. By using MLN4924, an anti-cancer drug in clinical trials that specifically inhibits conjugation of the ubiquitin-like protein, NEDD8, to target proteins, we demonstrate that NEDD8 accumulation at DNA-damage sites is a highly dynamic process. In addition, we show that depleting cells of the NEDD8 E2-conjugating enzyme, UBE2M, yields ionizing radiation hypersensitivity and reduced cell survival following NHEJ. Finally, we demonstrate that neddylation promotes Ku ubiquitylation after DNA damage and release of Ku and Ku-associated proteins from damage sites following repair. These studies provide insights into how the NHEJ core complex dissociates from repair sites and highlight its importance for cell survival following DSB induction.


Assuntos
Antígenos Nucleares/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Ubiquitinas/metabolismo , Antígenos Nucleares/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclopentanos/toxicidade , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/química , Histonas/metabolismo , Humanos , Autoantígeno Ku , Proteína NEDD8 , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica , Pirimidinas/toxicidade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Ubiquitinas/antagonistas & inibidores
20.
Nat Struct Mol Biol ; 22(2): 150-157, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25558984

RESUMO

Mammalian CtIP protein has major roles in DNA double-strand break (DSB) repair. Although it is well established that CtIP promotes DNA-end resection in preparation for homology-dependent DSB repair, the molecular basis for this function has remained unknown. Here we show by biophysical and X-ray crystallographic analyses that the N-terminal domain of human CtIP exists as a stable homotetramer. Tetramerization results from interlocking interactions between the N-terminal extensions of CtIP's coiled-coil region, which lead to a 'dimer-of-dimers' architecture. Through interrogation of the CtIP structure, we identify a point mutation that abolishes tetramerization of the N-terminal domain while preserving dimerization in vitro. Notably, we establish that this mutation abrogates CtIP oligomer assembly in cells, thus leading to strong defects in DNA-end resection and gene conversion. These findings indicate that the CtIP tetramer architecture described here is essential for effective DSB repair by homologous recombination.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Multimerização Proteica/fisiologia , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Endodesoxirribonucleases , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA