Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(11): 3413-3419, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29485887

RESUMO

Systems comprising single and multilayer graphene deposited on metals and immersed in acid environments have been investigated, with the aim of elucidating the mechanisms involved, for instance, in hydrogen production or metal protection from corrosion. In this work, a relevant system, namely chemical vapor deposited (CVD) multilayer graphene/Ni (MLGr/Ni), is studied when immersed in a diluted sulfuric electrolyte. The MLGr/Ni electrochemical and morphological properties are studied in situ and interpreted in light of the highly oriented pyrolytic graphite (HOPG) electrode behavior, when immersed in the same electrolyte. Following this interpretative framework, the dominant role of the Ni substrate in hydrogen production is clarified.

2.
J Phys Chem Lett ; 12(4): 1262-1267, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497236

RESUMO

Combining scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we demonstrate how to tune the doping of epitaxial graphene from p to n by exploiting the structural changes that occur spontaneously on the Ge surface upon thermal annealing. Furthermore, using first-principle calculations, we build a model that successfully reproduces the experimental observations. Since the ability to modify graphene electronic properties is of fundamental importance when it comes to applications, our results provide an important contribution toward the integration of graphene with conventional semiconductors.

3.
ACS Appl Mater Interfaces ; 10(30): 25804-25810, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979573

RESUMO

The availability of an accurate, nondestructive method for measuring thickness and continuity of two-dimensional (2D) materials with monolayer sensitivity over large areas is of pivotal importance for the development of new applications based on these materials. While simple optical contrast methods and electrical measurements are sufficient for the case of metallic and semiconducting 2D materials, the low optical contrast and high electrical resistivity of wide band gap dielectric 2D materials such as hexagonal boron nitride (hBN) hamper their characterization. In this work, we demonstrate a nondestructive method to quantitatively map the thickness and continuity of hBN monolayers and bilayers over large areas. The proposed method is based on acquisition and subsequent fitting of ellipsometry spectra of hBN on Si/SiO2 substrates. Once a proper optical model is developed, it becomes possible to identify and map the commonly observed polymer residuals from the transfer process and obtain submonolayer thickness sensitivity for the hBN film. With some assumptions on the optical functions of hBN, the thickness of an as-transferred hBN monolayer on SiO2 is measured as 4.1 Å ± 0.1 Å, whereas the thickness of an air-annealed hBN monolayer on SiO2 is measured as 2.5 Å ± 0.1 Å. We argue that the difference in the two measured values is due to the presence of a water layer trapped between the SiO2 surface and the hBN layer in the latter case. The procedure can be fully automated to wafer scale and extended to other 2D materials transferred onto any polished substrate, as long as their optical functions are approximately known.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA