Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702786

RESUMO

During the harvest of 2020 and 2021, sweet cherry (Prunus avium) fruit showed a firm rot with irregular pale to dark brown lesions on the fruit surface, with green to light brown fungal growth resembling Alternaria-like infection (Simmons, 2007). Diseased cherries (n= 80 fruit) were collected at harvest in mature (over 10-year-old) commercial orchards of cherry tree varieties Lapins, Regina, Santina, Skeena, and Sweetheart planted in four localities of the regions O´Higgins (33°59´ S, 70°42´W; San Francisco de Mostazal and Graneros) and Maule (35°00'S, 71°23´W; Curicó and Sagrada Familia), Central Chile. The incidence of black rot was 1.9 and 3.2% in O´Higgins and Maule region, respectively, and it was increased to up to 5% during cold storage. The fruit collected previously, were transported to the lab, and surface disinfected in 75% ethanol for 15 s, and rinsed in sterile water. Internal pieces from the junction of diseased and healthy tissues of fruits were placed on potato dextrose agar (PDA, 2%) for 7 days at 20°C. Forty-two isolates of Alternaria-like (Simmons, 2007) were recovered consistently from pure cultures taking hyphal tips from 7 days old cultures. On PDA, 28 isolates (group A) were characterized by cottony, white-gray to green colonies and conidial chains (4 to 10 conidia) with secondary chains (1 to 5 conidia) branching on the conidiophore. Conidia were ovate to obclavate (mean 22.8 ± 5.1 x 8.8 ± 1.5 µm; n=40) with 3 to 7 transepta and 1 longisepta. The remaining 14 isolates (group B) were characterized by cottony, olive-green to olive-brown colonies following a ring pattern of growth and white margins, with conidial chains (4 to 14 conidia) and uncommon secondary chains (1 to 4 conidia). Conidia were obpyriform to ovate, light brown to brown with a cylindrical short beak at the tip (mean 24.7 ± 5.9 × 11.2 ± 1.3 µm; n=40) with 2 to 4 transepta, and 0 to 2 longisepta. Two representative isolates of group A (Sant-02-2020 and Bing-03-2020) and group B (Sant-26-2021 and Skeen-43-2021) were amplified for the Alternaria major allergen (Alt a1), plasma membrane ATPase (ATP), and calmodulin (Cal) loci following the protocols described by Hong et al. (2005) and Lawrence et al. (2013). A MegaBlast search of sequences of group A (GenBank nos. OR267293- OR267294, OR258001- OR258002, and OR267297- OR267298, for Alt a1, ATP, and Cal, respectively) showed 100% similarity to strains UCD10529 and UCD10539 of A. alternata, and group B (GenBank nos. OR267295- OR267296, OR258003- OR258004, and OR258005- OR258006, for Alt a1, ATP, and Cal, respectively) showed 100% similarity to strains EGS 34-015 and A30 of A. tenuissima. Combined phylogenetic analysis using MEGA X clustered isolates Sant-02-2020 and Bing-03-2020, and Sant-26-2021 and Skeen-43-2021 with ex-type of A. alternata and A. tenuissima, respectively. Pathogenicity tests were conducted using isolates of A. alternata (Sant-02-2020; Bing-03-2020) and A. tenuissima (Sant-26-2021; Skeen-43-2021). Detached ripe cherry fruit var. Sweetheart (n=40 fruits/isolate) and Regina (n=40 fruits/isolate) were surfaces disinfested (75% ethanol, 30 s), wounded in the middle with a sterile needle (2 mm in depth), and inoculated with 20 µL of conidial suspension (106 conidia/mL). An equal number of healthy cherries (n=40 fruits) treated with sterile water were used as controls. The experiment was repeated once. All inoculated fruit incubated for 7 days at 22°C, developed between 13 ± 2.7 to 23 ± 2.5 mm and 14.1 ± 1.1 to 19 ± 3.6 mm in lesion diameter for A. alternata and A. tenuissima isolates, respectively. Koch´s postulates were fulfilled by 100% reisolation of the causal pathogen from inoculated fruit, and molecular identification of A. alternata and A. tenuissima isolates. Previously, A. alternata has been described as causing rots on cherries in Chile (Acuña 2010), and China (Zhao and Liu, 2012; Ahmad et al., 2020). To our knowledge, this is the first occurrence of cherry black rot caused by A. alternata and A. tenuissima in Central Chile. Epidemiological studies are necessary to develop integrated management of cherry black rot in Central Chile.

2.
Plant Dis ; 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35306850

RESUMO

Apple (Malus × domestica) is an important fruit crop in Chile, with a cultivated area of 32,313 ha concentrated (63%) in Maule Region (35°25' S). Unusual core rot on 'Fuji' apples was observed at harvest in a commercial orchard in Curicó, Maule Region, with an incidence ranged between 22 to 35% in 2018 and 2019. Previously, in 2017, an incidence of 30% was estimated on 'Fuji' fruits destined to the Asian market. Internal decay symptoms consisted of dry, corky light to dark-brown tissue, within the seed locules initially. In moderate to severe cases, the necrotic lesion progresses deeper into the mesoderm. External symptoms were quite subtle, and typically, the disease goes unnoticed. However, infected fruit ripen earlier. Small pieces (2-3 mm) from the internal lesion margin of symptomatic apples (n = 50) were placed on Potato Dextrose Agar (PDA) (2%) and incubated at 20°C for 10 days. Pure cultures (n = 41) were obtained and transferred to Malt Extract Agar (MEA) (2%). Colonies on MEA produced an even to slight undulating buff margin with white woolly aerial mycelium, and immerse ochreous in the center, changing gray to olivaceous aerial mycelium with age. On the underside, colonies were umber and buff in the center and margin, respectively. After 10 days, numerous densely aggregate dark-brown mature pycnidia were observed. Aseptate conidia were subglobose to cylindrical, straight, and sometimes curved with rounded at both ends, that was initially hyaline to pale olive, thin, smooth wall with mean dimensions of (2.9-) 3.4 (-4.4) x (1.5-) 1.8 (2.2) µm (n=50). Based on morphology, the fungus was identified as Kalmusia variispora (Verkley et al. 2014). The internal transcribed space (ITS), portion of ß-tubulin (TUB), and large subunits of the nuclear ribosomal RNA (LSU) loci were used for molecular identification, using primers ITS4/ITS5, Bt2a/Bt2b, and LR0R/LR5 (Ariyawansa et al., 2014). BLAST searches indicated 100% identity with K. variispora (ex-type CBS 121517). The maximum parsimony phylogenetic analysis placed Chilean isolates in the K. variispora clade. Sequences were deposited in GenBank (OL711706 to OL711709, OL739499 to OL739502 and OL711710 to OL711713 for ITS, TUB and LSU, respectively). Pathogenicity tests were conducted using four K. variispora isolates. 'Fuji' apples (n = 20) were surface disinfested (75% ethanol, 30 s) and then wounded and inoculated with conidial suspension (50 L of 106 conidia/mL) deposited in the middle and into the core region using a sterile fine-tipped micropipette. Additionally, 20 one-year dormant rooted cuttings 'Fuji' and 'Cripps Pink' were pruned and immediately inoculated on the pruning wound. An equal number of apples and rooted cuttings treated with sterile water were used as controls. The experiments were repeated once. All inoculated fruits developed lateral lesions (22 to 37 mm) and dry core rot (18 to 36 mm) symptoms identical to those described in the original outbreak, after 20 days at 20°C in a commercial packing box. The inoculated cuttings produced canker lesions of 10 to 21 mm in length, and dieback symptoms were observed after 3 months. No symptoms were observed on the negative controls. Koch's postulates were fulfilled by 100% reisolating K. variispora. Previously, Alternaria spp. have been reported as the primary pathogen associated with moldy core and dry core rot of apples worldwide (McLeod et al., 2014) and in Chile (Elfar et al., 2018). However, Kalmusia spp. have been associated with dry core rot in apples (McLeod et al., 2014) and have been isolated from canker symptoms on apples in Chile (Díaz et al. 2021). To our knowledge, this is the first report of a severe outbreak of K. variispora causing dry core rot in apples in Chile and worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA