Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(14): 10025-10034, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34197090

RESUMO

Tracing produced water origins from wells hydraulically fractured with freshwater-based fluids is sometimes predicated on assumptions that (1) each geological formation contains compositionally unique brine and (2) produced water from recently hydraulically fractured wells resembles fresher meteoric water more so than produced water from older wells. These assumptions are not valid in Williston Basin oil wells sampled in this study. Although distinct average 228Ra/226Ra ratios were found in water produced from the Bakken and Three Forks Formations, average δ2H, δ18O, specific gravity, and conductivity were similar but exhibited significant variability across five oil fields within each formation. Furthermore, initial produced water ("flowback") was operationally defined based on the presence of glycol ether compounds and water from wells that had produced <56% of the amount of fluids injected and sampled within 160 days of fracturing. Flowback unexpectedly exhibited higher temperature, specific gravity, conductivity, δ2H, and δ18O, but lower oxidation-reduction potential and δ11B, relative to the wells thought to be producing formation brines (from wells with a produced-to-injected water ratio [PIWR] > 0.84 and sampled more than 316 days after fracturing). As such, establishing an overall geochemical and isotopic signature of produced water compositions based solely on chemical similarity to meteoric water and formation without the consideration of well treatments, well completion depth, or lateral location across the basin could be misleading if these signatures are assumed to be applicable across the entire basin. These findings have implications for using produced water compositions to understand the interbasin fluid flow and trace sources of hydraulic fracturing fluids.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água , Campos de Petróleo e Gás , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Poços de Água
2.
Water Resour Res ; 51(7): 5839-5845, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-26937056

RESUMO

A U.S. map of water volumes used to hydraulically fracture oil and gas wells, 2011-2014Hydraulic fracturing water volumes differ regionally across the U.S.Discussion of variation in water use and potential environmental implications.

3.
Environ Sci Technol ; 47(13): 7357-64, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23742708

RESUMO

Mackinawite, Fe(II)S, samples loaded with uranium (10(-5), 10(-4), and 10(-3) mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10(-5) M uranium(VI) to below 30 ppb (1.26 × 10(-7) M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium-oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.


Assuntos
Compostos Ferrosos/química , Urânio/química , Poluentes Radioativos da Água/química , Bicarbonatos/química , Concentração de Íons de Hidrogênio , Oxigênio/química , Espectroscopia por Absorção de Raios X , Difração de Raios X
4.
Sci Total Environ ; 838(Pt 3): 156331, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35640759

RESUMO

Wastewater generated during petroleum extraction (produced water) may contain high concentrations of dissolved organics due to their intimate association with organic-rich source rocks, expelled petroleum, and organic additives to fluids used for hydraulic fracturing of unconventional (e.g., shale) reservoirs. Dissolved organic matter (DOM) within produced water represents a challenge for treatment prior to beneficial reuse. High salinities characteristic of produced water, often 10× greater than seawater, coupled to the complex DOM ensemble create analytical obstacles with typical methods. Excitation-emission matrix spectroscopy (EEMS) can rapidly characterize the fluorescent component of DOM with little impact from matrix effects. We applied EEMS to evaluate DOM composition in 18 produced water samples from six North American unconventional petroleum plays. Represented reservoirs include the Eagle Ford Shale (Gulf Coast Basin), Wolfcamp/Cline Shales (Permian Basin), Marcellus Shale and Utica/Point Pleasant (Appalachian Basin), Niobrara Chalk (Denver-Julesburg Basin), and the Bakken Formation (Williston Basin). Results indicate that the relative chromophoric DOM composition in unconventional produced water may distinguish different lithologies, thermal maturity of resource types (e.g., heavy oil vs. dry gas), and fracturing fluid compositions, but is generally insensitive to salinity and DOM concentration. These results are discussed with perspective toward DOM influence on geochemical processes and the potential for targeted organic compound treatment for the reuse of produced water.


Assuntos
Fraturamento Hidráulico , Petróleo , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Minerais , Gás Natural , Campos de Petróleo e Gás , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
5.
Heliyon ; 6(3): e03590, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195404

RESUMO

The organic composition of produced waters (flowback and formation waters) from the middle member of the Bakken Formation and the Three Forks Formation in the Williston Basin, North Dakota were examined to aid in the remediation of surface contamination and help develop treatment methods for produced-water recycling. Twelve produced water samples were collected from the Bakken and Three Forks Formations and analyzed for non-purgeable dissolved organic carbon (NPDOC), acetate, and extractable hydrocarbons. NPDOC and acetate concentrations from sampled wells from ranged from 33-190 mg per liter (mg/L) and 16-40 mg/L, respectively. Concentrations of individual extractable hydrocarbon compounds ranged from less than 1 to greater than 400 µg per liter (µg/L), and included polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, glycol ethers, and cyclic ketones. While the limited number of samples, varying well production age, and lack of knowledge of on-going well treatments complicate conclusions, this report adds to the limited knowledge of organics in produced waters from the Bakken and Three Forks Formations.

6.
Science ; 374(6574): 1455, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914500
7.
Chemosphere ; 134: 499-503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25553897

RESUMO

FeS has been recognized as a good scavenger for arsenic under anoxic conditions. To create a suitable adsorbent for flow-through reactors such as permeable reactive barriers, it has been suggested that this material may be coated onto sand. However, previous work on FeS-coated sand has focused on batch reactors, while flow-through reactors usually have higher solid-solution ratios. To ascertain whether differences in the solid-solution ratio (SSR) are important in this system, batch sorption experiments were conducted as a function of pH using As(III) and FeS-coated sands at various solid-solution ratios. The results showed little variation in the distribution coefficient with SSR at pH 7 and 9. However, at pH 5, the results showed lower values of the distribution coefficient at lower SSRs, the reverse of typically reported SSR effects. Measured pe values showed a dependence on SSR, which, when coupled with chemical modeling of the Fe-As-S-H2O system, suggested a change in the removal mechanism with SSR, from adsorption to a reduced Fe(II) oxyhydroxide phase (represented by Fe2(OH)5) to precipitation as As2S3 or AsS. On the other hand, at pH 7 and 9, arsenite adsorption is the most probable removal mechanism regardless of the pe. Thus, this study identified variations in pH and redox conditions, and the removal mechanisms that these parameters govern, as the reason for the apparent SSR effect.


Assuntos
Arsênio/química , Compostos Ferrosos/química , Oxigênio/química , Poluentes Químicos da Água/química , Adsorção , Arsenitos/química , Eletrodos , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxirredução , Dióxido de Silício , Temperatura
8.
Water Res ; 45(2): 593-604, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974481

RESUMO

Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating.


Assuntos
Arsênio/isolamento & purificação , Compostos Ferrosos/química , Dióxido de Silício , Anaerobiose , Arsênio/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura
9.
Environ Sci Technol ; 42(24): 9338-43, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19174913

RESUMO

This study investigates the removal of As(III) from solution using mackinawite, a nanoparticulate reduced iron sulfide. Mackinawite suspensions (0.1-40 g/L) effectively lower initial concentrations of 1.3 x 10(-5) M As(III) from pH 5-10, with maximum removal occurring under acidic conditions. Based on Eh measurements, it was found that the redox state of the system depended on the mackinawite solids concentration and pH. Higher initial mackinawite concentrations and alkaline pH resulted in a more reducing redox condition. Given this, the pH edge data were modeled thermodynamically using pe (-log[e(-)]) as a fitting parameter and linear pe-pH relationships within the range of measured Eh values as a function of pH and mackinawite concentration. The model predicts removal of As(III) from solution by precipitation of realgar with the formation of secondary oxidation products, greigite or a mixed-valence iron oxide phase, depending on pH. This study demonstrates that mackinawite is an effective sequestration agent for As(III) and highlights the importance of incorporating redox into models describing the As-Fe-S-H2O system.


Assuntos
Arsênio/química , Arsenicais/química , Compostos Ferrosos/química , Modelos Químicos , Sulfetos/química , Anaerobiose , Arsênio/isolamento & purificação , Precipitação Química , Meio Ambiente , Concentração de Íons de Hidrogênio , Oxirredução , Enxofre/isolamento & purificação
10.
Environ Sci Technol ; 41(22): 7781-6, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18075088

RESUMO

As(III) uptake from solution by synthetic mackinawite is examined as a function of pH and initial As(III) concentration using X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD). XAS data indicate that when mackinawite is reacted at pH 5, 7, and 9 with 5 x 10(-4) M As(III), arsenic is reduced from its original +3 valence state and is primarily coordinated as As-S (approximately 2.26 angstroms) and As-As (approximately 2.54 angstroms), which is consistent with the formation of a realgar-like phase in agreement with XRD data. At 5 x 10(-5) M As(III), samples are markedly different from those collected at an order of magnitude higher concentration and differ at each pH value. The XAS analysis of mackinawite samples reacted with 5 x 10(-5) M As(III) shows a transition from As-O coordination to As-S coordination as pH decreases, with the sample reacted at pH 5 resembling realgar. Under alkaline conditions, arsenic retains its original valence state of +3 and is primarily coordinated to oxygen at a distance of 1.75 angstroms. This may be attributed to uptake by adsorption as an As(III) oxyanion. These results provide the basis for selecting the reactions needed for modeling and are beneficial in understanding the mechanisms of arsenite uptake by mackinawite under anoxic sulfidic conditions.


Assuntos
Absorciometria de Fóton/métodos , Arsênio/química , Arsenitos/farmacocinética , Compostos Ferrosos/química , Ferro/química , Oxigênio/química , Espectrofotometria/métodos , Sulfitos/química , Enxofre/química , Anaerobiose , Ânions , Compostos Ferrosos/análise , Concentração de Íons de Hidrogênio , Cinética , Sulfetos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA