Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357521

RESUMO

Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO2 fixation. Diatoms fix up to 20% of global CO2, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. In situ cryo-electron tomography revealed that pyrenoids of both diatom species are encased in a lattice-like protein sheath. Single-particle cryo-EM yielded a 2.4-Å-resolution structure of an in vitro TpPyShell1 lattice, which showed how protein subunits interlock. T. pseudonana TpPyShell1/2 knockout mutants had no PyShell sheath, altered pyrenoid morphology, and a high-CO2 requiring phenotype, with reduced photosynthetic efficiency and impaired growth under standard atmospheric conditions. The structure and function of the diatom PyShell provide a molecular view of how CO2 is assimilated in the ocean, a critical ecosystem undergoing rapid change.

2.
J Cell Sci ; 136(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455654

RESUMO

Photosynthetic microalgae are responsible for an important fraction of CO2 fixation and O2 production on Earth. Three-dimensional (3D) ultrastructural characterization of these organisms in their natural environment can contribute to a deeper understanding of their cell biology. However, the low throughput of volume electron microscopy (vEM) methods along with the complexity and heterogeneity of environmental samples pose great technical challenges. In the present study, we used a workflow based on a specific electron microscopy sample preparation method compatible with both light and vEM imaging in order to target one cell among a complex natural community. This method revealed the 3D subcellular landscape of a photosynthetic dinoflagellate, which we identified as Ensiculifera tyrrhenica, with quantitative characterization of multiple organelles. We show that this cell contains a single convoluted chloroplast and show the arrangement of the flagellar apparatus with its associated photosensitive elements. Moreover, we observed partial chromatin unfolding, potentially associated with transcription activity in these organisms, in which chromosomes are permanently condensed. Together with providing insights in dinoflagellate biology, this proof-of-principle study illustrates an efficient tool for the targeted ultrastructural analysis of environmental microorganisms in heterogeneous mixes.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Imageamento Tridimensional/métodos
3.
PLoS Pathog ; 19(1): e1011023, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696456

RESUMO

Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Proteínas do Sistema Complemento , Complexo de Ataque à Membrana do Sistema Complemento
4.
J Phycol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292829

RESUMO

Cryptophytes are abundant and ubiquitous microalgae that constitute a major plastid source for kleptoplastidic ciliates and dinoflagellates. Despite their ecological significance, the understanding of their light preferences and photophysiology remains limited. Here, we provide a comprehensive study of the response of the haploid strain Teleaulax amphioxeia (Cr10EHU) to varying light irradiance. This strain is capable of growing under a wide range of irradiance levels, notably by finely tuning the different pigments bound to the membrane light-harvesting proteins. Analysis of the luminal phycoerythrin content revealed remarkable flexibility, with phycoerythrin emerging as a pivotal protein facilitating acclimation to varying light levels. Detailed ultrastructure examinations unveiled that this adaptability was supported by the synthesis of large thylakoidal vesicles, likely enhancing the capture of green photons efficiently under low light, a phenomenon previously undocumented. Teleaulax amphioxeia Cr10EHU effectively regulated light utilization by using a cryptophyte state transition-like process, with a larger amplitude observed under high growth irradiance. Furthermore, our results revealed the establishment of growth irradiance-dependent non-photochemical quenching of fluorescence, likely inducing the dissipation of excess light. This study underscores the particularities and the significant photoadaptability of the plastid of the haploid form of T. amphioxeia. It constitutes a comprehensive photophysiological characterization of the Cr10EHU strain that paves the way for future studies of the kleptoplastidy process.

5.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215695

RESUMO

Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.


Assuntos
Metabolismo Energético , Haptófitas/metabolismo , Plâncton/citologia , Simbiose , Ciclo do Carbono , Divisão Celular , Núcleo Celular/metabolismo , Microalgas/citologia , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo
6.
J Struct Biol ; 213(3): 107766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216761

RESUMO

Metals are essential for life and their concentration and distribution in organisms are tightly regulated. Indeed, in their free form, most transition metal ions are toxic. Therefore, an excess of physiologic metal ions or the uptake of non-physiologic metal ions can be highly detrimental to the organism. It is thus fundamental to understand metal distribution under physiological, pathological or environmental conditions, for instance in metal-related pathologies or upon environmental exposure to metals. Elemental imaging techniques can serve this purpose, by allowing the visualization and the quantification of metal species in tissues down to the level of cell organelles. Synchrotron radiation-based X-ray fluorescence (SR-XRF) microscopy is one of the most sensitive techniques to date, and great progress was made to reach nanoscale spatial resolution. Here we propose a correlative method to couple SR-XRF to electron microscopy (EM), with the possibility to quantify selected elemental contents in a specific organelle of interest with 50 × 50 nm2 raster scan resolution. We performed EM and SR-XRF on the same section of hepatocytes exposed to silver nanoparticles, in order to identify mitochondria through EM and visualize Ag co-localized with these organelles through SR-XRF. We demonstrate the accumulation of silver in mitochondria, which can reach a 10-fold higher silver concentration compared to the surrounding cytosol. The sample preparation and experimental setup can be adapted to other scientific questions, making the correlative use of SR-XRF and EM suitable to address a large panel of biological questions related to metal homeostasis.


Assuntos
Nanopartículas Metálicas , Oligoelementos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência/métodos , Organelas , Prata , Espectrometria por Raios X/métodos , Raios X
7.
Environ Microbiol ; 23(11): 6569-6586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499794

RESUMO

Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13 C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.


Assuntos
Dinoflagellida , Microalgas , Fotossíntese , Plâncton , Simbiose
8.
New Phytol ; 231(1): 326-338, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764540

RESUMO

Galdieria sulphuraria is a cosmopolitan microalga found in volcanic hot springs and calderas. It grows at low pH in photoautotrophic (use of light as a source of energy) or heterotrophic (respiration as a source of energy) conditions, using an unusually broad range of organic carbon sources. Previous data suggested that G. sulphuraria cannot grow mixotrophically (simultaneously exploiting light and organic carbon as energy sources), its photosynthetic machinery being repressed by organic carbon. Here, we show that G. sulphuraria SAG21.92 thrives in photoautotrophy, heterotrophy and mixotrophy. By comparing growth, biomass production, photosynthetic and respiratory performances in these three trophic modes, we show that addition of organic carbon to cultures (mixotrophy) relieves inorganic carbon limitation of photosynthesis thanks to increased CO2 supply through respiration. This synergistic effect is lost when inorganic carbon limitation is artificially overcome by saturating photosynthesis with added external CO2 . Proteomic and metabolic profiling corroborates this conclusion suggesting that mixotrophy is an opportunistic mechanism to increase intracellular CO2 concentration under physiological conditions, boosting photosynthesis by enhancing the carboxylation activity of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and decreasing photorespiration. We discuss possible implications of these findings for the ecological success of Galdieria in extreme environments and for biotechnological applications.


Assuntos
Extremófilos , Rodófitas , Carbono , Dióxido de Carbono , Processos Heterotróficos , Fotossíntese , Proteômica
9.
Cell Microbiol ; 22(11): e13251, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779854

RESUMO

During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase-1, which in turn triggers macrophage pyroptosis and IL-1ß/IL-18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore-forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase-11 activation. Surprisingly, previous studies indicated that a T3SS-induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS-negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore-forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll-like receptors, and thus enhanced the expression of inflammatory proteins including pro-IL-1ß and TNF-α. However, mature-IL-1ß and IL-18 were undetectable in wild-type mice, suggesting that ExlA failed to effectively activate caspase-1. Nevertheless, caspase-1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA-induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome-dependent process.


Assuntos
Inflamassomos/imunologia , Leucocidinas/toxicidade , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Citocinas/biossíntese , Inflamassomos/metabolismo , Inflamação , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Infiltração de Neutrófilos , Fragmentos de Peptídeos/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo , Sistemas de Secreção Tipo III , Virulência
10.
Proc Natl Acad Sci U S A ; 115(10): E2220-E2228, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476011

RESUMO

The gram-negative pathogen Providencia stuartii forms floating communities within which adjacent cells are in apparent contact, before depositing as canonical surface-attached biofilms. Because porins are the most abundant proteins in the outer membrane of gram-negative bacteria, we hypothesized that they could be involved in cell-to-cell contact and undertook a structure-function relationship study on the two porins of P. stuartii, Omp-Pst1 and Omp-Pst2. Our crystal structures reveal that these porins can self-associate through their extracellular loops, forming dimers of trimers (DOTs) that could enable cell-to-cell contact within floating communities. Support for this hypothesis was obtained by studying the porin-dependent aggregation of liposomes and model cells. The observation that facing channels are open in the two porin structures suggests that DOTs could not only promote cell-to-cell contact but also contribute to intercellular communication.


Assuntos
Biofilmes , Porinas/metabolismo , Providencia/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Dimerização , Porinas/química , Porinas/genética , Providencia/química , Providencia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA