Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071241

RESUMO

Amphipterygium adstringens (cuachalalate) contains anacardic acids (AAs) such as 6-pentadecyl salicylic acid (6SA) that show immunomodulatory and antitumor activity with minimal or no secondary adverse effects. By contrast, most chemotherapeutic agents, such as 5-fluorouracil (5-FU) and carboplatin (CbPt), induce myelosuppression and leukopenia. Here, we investigated the myeloprotective and antineoplastic potential of an AA extract or the 6SA as monotherapy or in combination with commonly used chemotherapeutic agents (5-FU and CbPt) to determine the cytoprotective action of 6SA on immune cells. Treatment of Balb/c breast tumor-bearing female mice with an AA mixture or 6SA did not induce the myelosuppression or leukopenia observed with 5-FU and CbPt. The co-administration of AA mixture or isolated 6SA with 5-FU or CbPt reduced the apoptosis of circulating blood cells and bone marrow cells. Treatment of 4T1 breast tumor-bearing mice with the AA mixture or 6SA reduced tumor growth and lung metastasis and increased the survival rate compared with monotherapies. An increased effect was observed in tumor reduction with the combination of 6SA and CbPt. In conclusion, AAs have important myeloprotective and antineoplastic effects, and they can improve the efficiency of chemotherapeutics, thereby protecting the organism against the toxic effects of drugs such as 5-FU and CbPt.


Assuntos
Ácidos Anacárdicos/química , Carboplatina/farmacologia , Fluoruracila/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Anacardiaceae , Ácidos Anacárdicos/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citoproteção , Modelos Animais de Doenças , Feminino , Hexanos/química , Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Casca de Planta/metabolismo
2.
Materials (Basel) ; 16(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37109857

RESUMO

In this work, Curcuma longa L. extract has been used in the synthesis and direct coating of magnetite (Fe3O4) nanoparticles ~12 nm, providing a surface layer of polyphenol groups (-OH and -COOH). This contributes to the development of nanocarriers and triggers different bio-applications. Curcuma longa L. is part of the ginger family (Zingiberaceae); the extracts of this plant contain a polyphenol structure compound, and it has an affinity to be linked to Fe ions. The nanoparticles' magnetization obtained corresponded to close hysteresis loop Ms = 8.81 emu/g, coercive field Hc = 26.67 Oe, and low remanence energy as iron oxide superparamagnetic nanoparticles (SPIONs). Furthermore, the synthesized nanoparticles (G-M@T) showed tunable single magnetic domain interactions with uniaxial anisotropy as addressable cores at 90-180°. Surface analysis revealed characteristic peaks of Fe 2p, O 1s, and C 1s. From the last one, it was possible to obtain the C-O, C=O, -OH bonds, achieving an acceptable connection with the HepG2 cell line. The G-M@T nanoparticles do not induce cell toxicity in human peripheral blood mononuclear cells or HepG2 cells in vitro, but they can increase the mitochondrial and lysosomal activity in HepG2 cells, probably related to an apoptotic cell death induction or to a stress response due to the high concentration of iron within the cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA