Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Infect Dis ; 24(1): 496, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755564

RESUMO

BACKGROUND: Early in the host-response to infection, neutrophils release calprotectin, triggering several immune signalling cascades. In acute infection management, identifying infected patients and stratifying these by risk of deterioration into sepsis, are crucial tasks. Recruiting a heterogenous population of patients with suspected infections from the emergency department, early in the care-path, the CASCADE trial aimed to evaluate the accuracy of blood calprotectin for detecting bacterial infections, estimating disease severity, and predicting clinical deterioration. METHODS: In a prospective, observational trial from February 2021 to August 2022, 395 patients (n = 194 clinically suspected infection; n = 201 controls) were enrolled. Blood samples were collected at enrolment. The accuracy of calprotectin to identify bacterial infections, and to predict and identify sepsis and mortality was analysed. These endpoints were determined by a panel of experts. RESULTS: The Area Under the Receiver Operating Characteristic (AUROC) of calprotectin for detecting bacterial infections was 0.90. For sepsis within 72 h, calprotectin's AUROC was 0.83. For 30-day mortality it was 0.78. In patients with diabetes, calprotectin had an AUROC of 0.94 for identifying bacterial infection. CONCLUSIONS: Calprotectin showed notable accuracy for all endpoints. Using calprotectin in the emergency department could improve diagnosis and management of severe infections, in combination with current biomarkers. CLINICAL TRIAL REGISTRATION NUMBER: DRKS00020521.


Assuntos
Biomarcadores , Complexo Antígeno L1 Leucocitário , Sepse , Humanos , Complexo Antígeno L1 Leucocitário/sangue , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Biomarcadores/sangue , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infecções Bacterianas/sangue , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/mortalidade , Curva ROC , Adulto , Idoso de 80 Anos ou mais , Serviço Hospitalar de Emergência
2.
Crit Care Med ; 49(10): 1664-1673, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166284

RESUMO

OBJECTIVES: The rapid diagnosis of acute infections and sepsis remains a serious challenge. As a result of limitations in current diagnostics, guidelines recommend early antimicrobials for suspected sepsis patients to improve outcomes at a cost to antimicrobial stewardship. We aimed to develop and prospectively validate a new, 29-messenger RNA blood-based host-response classifier Inflammatix Bacterial Viral Non-Infected version 2 (IMX-BVN-2) to determine the likelihood of bacterial and viral infections. DESIGN: Prospective observational study. SETTING: Emergency Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany. PATIENTS: Three hundred twelve adult patients presenting to the emergency department with suspected acute infections or sepsis with at least one vital sign change. INTERVENTIONS: None (observational study only). MEASUREMENTS AND MAIN RESULTS: Gene expression levels from extracted whole blood RNA was quantified on a NanoString nCounter SPRINT (NanoString Technologies, Seattle, WA). Two predicted probability scores for the presence of bacterial and viral infection were calculated using the IMX-BVN-2 neural network classifier, which was trained on an independent development set. The IMX-BVN-2 bacterial score showed an area under the receiver operating curve for adjudicated bacterial versus ruled out bacterial infection of 0.90 (95% CI, 0.85-0.95) compared with 0.89 (95% CI, 0.84-0.94) for procalcitonin with procalcitonin being used in the adjudication. The IMX-BVN-2 viral score area under the receiver operating curve for adjudicated versus ruled out viral infection was 0.83 (95% CI, 0.77-0.89). CONCLUSIONS: IMX-BVN-2 demonstrated accuracy for detecting both viral infections and bacterial infections. This shows the potential of host-response tests as a novel and practical approach for determining the causes of infections, which could improve patient outcomes while upholding antimicrobial stewardship.


Assuntos
Infecções Bacterianas/diagnóstico , RNA Mensageiro/análise , Viroses/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Infecções Bacterianas/sangue , Infecções Bacterianas/fisiopatologia , Berlim , Biomarcadores/análise , Biomarcadores/sangue , Serviço Hospitalar de Emergência/organização & administração , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Mensageiro/sangue , Curva ROC , Viroses/sangue , Viroses/fisiopatologia
4.
Eur J Emerg Med ; 29(5): 357-365, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35467566

RESUMO

BACKGROUND AND IMPORTANCE: mRNA-based host response signatures have been reported to improve sepsis diagnostics. Meanwhile, prognostic markers for the rapid and accurate prediction of severity in patients with suspected acute infections and sepsis remain an unmet need. IMX-SEV-2 is a 29-host-mRNA classifier designed to predict disease severity in patients with acute infection or sepsis. OBJECTIVE: Validation of the host-mRNA infection severity classifier IMX-SEV-2. DESIGN, SETTINGS AND PARTICIPANTS: Prospective, observational, convenience cohort of emergency department (ED) patients with suspected acute infections. OUTCOME MEASURES AND ANALYSIS: Whole blood RNA tubes were analyzed using independently trained and validated composite target genes (IMX-SEV-2). IMX-SEV-2-generated risk scores for severity were compared to the patient outcomes in-hospital mortality and 72-h multiorgan failure. MAIN RESULTS: Of the 312 eligible patients, 22 (7.1%) died in hospital and 58 (18.6%) experienced multiorgan failure within 72 h of presentation. For predicting in-hospital mortality, IMX-SEV-2 had a significantly higher area under the receiver operating characteristic (AUROC) of 0.84 [95% confidence intervals (CI), 0.76-0.93] compared to 0.76 (0.64-0.87) for lactate, 0.68 (0.57-0.79) for quick Sequential Organ Failure Assessment (qSOFA) and 0.75 (0.65-0.85) for National Early Warning Score 2 (NEWS2), ( P = 0.015, 0.001 and 0.013, respectively). For identifying and predicting 72-h multiorgan failure, the AUROC of IMX-SEV-2 was 0.76 (0.68-0.83), not significantly different from lactate (0.73, 0.65-0.81), qSOFA (0.77, 0.70-0.83) or NEWS2 (0.81, 0.75-0.86). CONCLUSION: The IMX-SEV-2 classifier showed a superior prediction of in-hospital mortality compared to biomarkers and clinical scores among ED patients with suspected infections. No improvement for predicting multiorgan failure was found compared to established scores or biomarkers. Identifying patients with a high risk of mortality or multiorgan failure may improve patient outcomes, resource utilization and guide therapy decision-making.


Assuntos
Infecções , Sepse , Biomarcadores , Serviço Hospitalar de Emergência , Mortalidade Hospitalar , Humanos , Ácido Láctico , Insuficiência de Múltiplos Órgãos , Escores de Disfunção Orgânica , Prognóstico , RNA Mensageiro , Curva ROC , Estudos Retrospectivos , Sepse/diagnóstico , Sepse/genética , Transcriptoma
5.
Open Forum Infect Dis ; 9(9): ofac437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36111173

RESUMO

Background: Identification of bacterial coinfection in patients with coronavirus disease 2019 (COVID-19) facilitates appropriate initiation or withholding of antibiotics. The Inflammatix Bacterial Viral Noninfected (IMX-BVN) classifier determines the likelihood of bacterial and viral infections. In a multicenter study, we investigated whether IMX-BVN version 3 (IMX-BVN-3) identifies patients with COVID-19 and bacterial coinfections or superinfections. Methods: Patients with polymerase chain reaction-confirmed COVID-19 were enrolled in Berlin, Germany; Basel, Switzerland; and Cleveland, Ohio upon emergency department or hospital admission. PAXgene Blood RNA was extracted and 29 host mRNAs were quantified. IMX-BVN-3 categorized patients into very unlikely, unlikely, possible, and very likely bacterial and viral interpretation bands. IMX-BVN-3 results were compared with clinically adjudicated infection status. Results: IMX-BVN-3 categorized 102 of 111 (91.9%) COVID-19 patients into very likely or possible, 7 (6.3%) into unlikely, and 2 (1.8%) into very unlikely viral bands. Approximately 94% of patients had IMX-BVN-3 unlikely or very unlikely bacterial results. Among 7 (6.3%) patients with possible (n = 4) or very likely (n = 3) bacterial results, 6 (85.7%) had clinically adjudicated bacterial coinfection or superinfection. Overall, 19 of 111 subjects for whom adjudication was performed had a bacterial infection; 7 of these showed a very likely or likely bacterial result in IMX-BVN-3. Conclusions: IMX-BVN-3 identified COVID-19 patients as virally infected and identified bacterial coinfections and superinfections. Future studies will determine whether a point-of-care version of the classifier may improve the management of COVID-19 patients, including appropriate antibiotic use.

6.
Viruses ; 13(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960725

RESUMO

BACKGROUND: We evaluated how plasma proteomic signatures in patients with suspected COVID-19 can unravel the pathophysiology, and determine kinetics and clinical outcome of the infection. METHODS: Plasma samples from patients presenting to the emergency department (ED) with symptoms of COVID-19 were stratified into: (1) patients with suspected COVID-19 that was not confirmed (n = 44); (2) non-hospitalized patients with confirmed COVID-19 (n = 44); (3) hospitalized patients with confirmed COVID-19 (n = 53) with variable outcome; and (4) patients presenting to the ED with minor diseases unrelated to SARS-CoV-2 infection (n = 20). Besides standard of care diagnostics, 177 circulating proteins related to inflammation and cardiovascular disease were analyzed using proximity extension assay (PEA, Olink) technology. RESULTS: Comparative proteome analysis revealed 14 distinct proteins as highly associated with SARS-CoV-2 infection and 12 proteins with subsequent hospitalization (p < 0.001). ADM, IL-6, MCP-3, TRAIL-R2, and PD-L1 were each predictive for death (AUROC curve 0.80-0.87). The consistent increase of these markers, from hospital admission to intensive care and fatality, supported the concept that these proteins are of major clinical relevance. CONCLUSIONS: We identified distinct plasma proteins linked to the presence and course of COVID-19. These plasma proteomic findings may translate to a protein fingerprint, helping to assist clinical management decisions.


Assuntos
Biomarcadores/sangue , COVID-19/sangue , Plasma/metabolismo , Proteoma , Berlim , Proteínas Sanguíneas , Medicina de Emergência , Serviço Hospitalar de Emergência , Hospitalização , Humanos , Proteômica , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
7.
TH Open ; 5(1): e43-e55, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33564744

RESUMO

COVID-19 (coronavirus disease 2019) patients often show excessive activation of coagulation, associated with increased risk of thrombosis. However, the diagnostic value of coagulation at initial clinical evaluation is not clear. We present an in-depth analysis of coagulation in patients presenting to the emergency department (ED) with suspected COVID-19. N = 58 patients with clinically suspected COVID-19 in the ED were enrolled. N = 17 subsequently tested positive using SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) polymerase chain reaction (PCR) swabs, while in n = 41 COVID-19 was ruled-out. We analyzed both standard and extended coagulation parameters, including thromboplastin time (INR), activated partial thromboplastin time (aPTT), antithrombin, plasminogen, plasminogen activator inhibitor-1 (PAI-1), D-dimers, and fibrinogen at admission, as well as α2-antiplasmin, activated protein C -resistance, factor V, lupus anticoagulant, protein C, protein S, and von Willebrand diagnostics. These data, as well as mortality and further laboratory parameters, were compared across groups based on COVID-19 diagnosis and severity of disease. In patients with COVID-19, we detected frequent clotting abnormalities, including D-dimers. The comparison cohort in the ED, however, showed similarly altered coagulation. Furthermore, parameters previously shown to distinguish between severe and moderate COVID-19 courses, such as platelets, plasminogen, fibrinogen, aPTT, INR, and antithrombin, as well as multiple nonroutine coagulation analytes showed no significant differences between patients with and without COVID-19 when presenting to the ED. At admission to the ED the prevalence of coagulopathy in patients with COVID-19 is high, yet comparable to the non-COVID-19 cohort presenting with respiratory symptoms. Nevertheless, coagulopathy might worsen during disease progression with the need of subsequent risk stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA