Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 27(23): 235401, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27119335

RESUMO

Conversion of solar irradiation into chemical fuels such as hydrogen with the use of a photoelectrochemical (PEC) cell is an attractive strategy for green energy. The promising technique of incorporating metal nanoparticles (NPs) in the photoelectrodes is being explored to enhance the performance of the photoelectrodes. In this work, we developed Au-NPs-functionalized nanoporous BiVO4 photoanodes, and utilized the plasmonic effects of Au NPs to enhance the photoresponse. The plasmonic enhancement leads to an AM 1.5 photocurrent of 5.1 ± 0.1 mA cm(-2) at 1.23 V versus a reverse hydrogen electrode. We observed an enhancement of five times with respect to pristine BiVO4 in the photocurrent with long-term stability and high energy-conversion efficiency. The overall performance enhancement is attributed to the synergy between the nanoporous architecture of BiVO4 and the plasmonic effects of Au NPs. Our further study reveals that the commendable photoactivity arises from the different plasmonic effects and co-catalyst effects of Au NPs.

2.
Nano Lett ; 12(3): 1690-6, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22364294

RESUMO

We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.


Assuntos
Capacitância Elétrica , Eletrônica/instrumentação , Hidrogênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
3.
Langmuir ; 28(28): 10558-64, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22697427

RESUMO

We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

4.
Nanoscale ; 6(13): 7142-64, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24896687

RESUMO

Harvesting energy directly from sunlight is a very attractive and desirable way to solve the rising energy demand. In the past few decades, considerable efforts have been focused on identifying appropriate materials and devices that can utilize solar energy to produce chemical fuels. Among these, one of the most promising options is the construction of a photoelectrochemical (PEC) cell that can produce hydrogen fuel or oxygen from water. Significant advancement in the understanding and construction of efficient photoanodes to improve performance has been accomplished within a short period of time owing to various newly developed ideas and approaches, including facilitating charge transportation in narrow band gap semiconductors or doping in wide band gap semiconductors for enhancing visible-light absorption; electrocatalysts for decreasing overpotentials; controlling the morphology of the materials for enhancing light absorption and shortening the transfer distance of minority carriers; and other methods such as using heterojunction structures for band-structure engineering, sensitization, and passivating layers. In this review, we focus on the recent developments of some promising visible-light active photoanode materials with high PEC performance, such as BiVO4, α-Fe2O3, WO3, TaON, and Ta3N5.

5.
Sci Rep ; 3: 1021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23293740

RESUMO

This work reports a facile method for preparing the new photoactive In(2)O(3) films as well as their implementation in photoelectrochemical (PEC) application. We firstly investigated the relationship between oxygen vacancies (V(O)) and PEC performance and revealed a rule between them. We found that the optimized In(2)O(3-n) sample yielded a photocurrent density up to 3.83 mA/cm(2) in 1 M Na(2)SO(4) solution under the solar illumination. It also gave efficiency as high as 75% over 400 nm in the incident-photon-to-current-conversion efficiency (IPCE) spectrum, which is the best value for an In(2)O(3) photoanode reported. Moreover, the PEC performance of these films is enhanced as the V(O) increased and then decreased with further increasing V(O). This two-side effect means V(O) can favor the photoelectron activation, or act as recombination centers to prohibit the generation of photocurrent. Making highly photoactive In(2)O(3) nanostructures in this work will open up new opportunities in various areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA