Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Drug Metab Dispos ; 48(8): 724-734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482623

RESUMO

Despite a recent expansion in the recognition of the potential utility of coproporphyrin (CP) as an endogenous biomarker of organic anion-transporting polypeptide (OATP) 1B activity, there have been few detailed studies of CP's pharmacokinetic behavior and an overall poor understanding of its pharmacokinetic fate from tissues and excretion. Here, we describe the pharmacokinetics of octadeuterium-labeled coproporphyrin I (CPI-d8) in cynomolgus monkeys following oral and intravenous administration. CPI-d8 has a half-life and bioavailability of 7.6 hours and 3.2%, respectively. Cynomolgus monkeys received oral cyclosporin A (CsA) at 4, 20, and 100 mg/kg which yielded maximum blood concentrations (C max) and area under the plasma concentration-time curve (AUC) values of 0.19, 2.5, and 3.8 µM, and 2.7, 10.5, and 26.6 µM·h, respectively. The apparent CsA-dose dependent increase in the AUC ratio of CPI-d8 (1.8, 6.2, and 10.5), CPI (1.1, 1.4, and 4.4), and CPIII (1.1, 1.8, and 4.6) at 4, 20, and 100 mg, respectively. In contrast, the plasma concentrations of CPI and CPIII were generally not affected by intravenous administration of the renal organic anion and cation transporter inhibitors (probenecid and pyrimethamine, respectively). In addition, tritium-labeled coproporphyrin I ([3H]CPI) showed specific and rapid distribution to the liver, intestine, and kidney after an intravenous dose in mice using quantitative whole-body autoradiography. Rifampin markedly reduced the liver and intestinal uptake of [3H]CPI while increasing the kidney uptake. Taken together, these results suggest that hepatic OATP considerably affects the disposition of CPI in animal models, indicating CPI is a sensitive and selective endogenous biomarker of OATP inhibition. SIGNIFICANCE STATEMENT: This study demonstrated that coproporphyrin I (CPI) has favorable oral absorption, distribution, and elimination profiles in monkeys and mice as an endogenous biomarker. It also demonstrated its sensitivity and selectivity as a probe of organic anion-transporting polypeptide (OATP) 1B activity. The study reports, for the first time, in vivo pharmacokinetics, tissue distribution, sensitivity, and selectivity of CPI as an OATP1B endogenous biomarker in animals. The data provide preclinical support for exploration of its utility as a sensitive and selective circulating OATP biomarker in humans.


Assuntos
Coproporfirinas/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Administração Intravenosa , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Biomarcadores/análise , Biomarcadores/metabolismo , Coproporfirinas/análise , Coproporfirinas/farmacocinética , Ciclosporina/administração & dosagem , Ciclosporina/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Meia-Vida , Absorção Intestinal , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Macaca fascicularis , Masculino , Camundongos , Rifampina/administração & dosagem , Distribuição Tecidual
2.
Xenobiotica ; 50(6): 621-629, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31566996

RESUMO

Accurate prediction of in vivo metabolic pathways in humans can be challenging because in vitro liver matrices may fail to produce certain in vivo metabolites.Rat and human spheroids, generated from cryopreserved hepatocytes in media that contained minimal amount of serum, maintained morphology, viability and cytochrome P450 (CYP) activities for at least a week without media exchange.With spheroid cultures, multiple Phase I and Phase II metabolites were observed in rat and human spheroid cultures that were incubated with loratadine (LOR) for multiple days. Consistent with in vivo observations, 3-hydroxydesloratadine, (3-OH-DL), along with its glucuronide, were observed in human spheroids, but not in rat spheroids. Interestingly, the putative intermediate metabolite leading to 3-OH-DL, DL-N-glucuronide, was observed in incubations with both rat and human spheroids. In conclusion, hepatocyte spheroid were capable of recapitulating the inter-species differences in metabolism between human and rat for LOR, therefore, it may represent a viable model for studying complex metabolic pathways.


Assuntos
Loratadina/metabolismo , Esferoides Celulares/metabolismo , Animais , Glucuronídeos , Hepatócitos/metabolismo , Humanos , Loratadina/análogos & derivados , Masculino , Redes e Vias Metabólicas , Ratos
3.
J Pharmacol Exp Ther ; 368(1): 136-145, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30361237

RESUMO

Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of organic anion transporter (OAT) 1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single-dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 hour after receiving PROB (40 and 1000 mg orally) on days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased the area under the plasma concentration-time curve (AUC) of PDA by 3.1-fold (dosed alone; P < 0.05), and 3.2-fold (coadministered with FSM; P < 0.01), compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (P > 0.05) and 2.1-fold (P < 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC, whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 vs. 3.3, respectively). PDA and HVA renal clearance (CL R) values were decreased by PROB to smaller extents compared with FSM (0.35-0.37 and 0.67-0.73 vs. 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and that its plasma exposure responds in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CL R values between subjects is more favorable relative to HVA.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Ácido Piridóxico/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
4.
Drug Metab Dispos ; 47(11): 1352-1360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427432

RESUMO

Recent pharmacogenetic evidence indicates that hepatic organic cation transporter (OCT) 1 can serve as the locus of drug-drug interactions (DDIs) with significant pharmacokinetic and pharmacodynamic consequences. We examined the impact of preincubation on the extent of OCT1 inhibition in transfected human embryonic kidney 293 (HEK293) cells. Following 30-minute preincubation with an inhibitor, approximately 50-fold higher inhibition potency was observed for cyclosporine A (CsA) against OCT1-mediated uptake of metformin compared with coincubation, with IC50 values of 0.43 ± 0.12 and 21.6 ± 4.5 µM, respectively. By comparison, only small shifts (≤2-fold) in preincubation IC50 versus coincubation were observed for quinidine, pyrimethamine, ritonavir, and trimethoprim. The shift in CsA OCT1 IC50 was substrate dependent since it ranged from >1.2- to 50.2-fold using different experimental substrates. The inhibition potential of CsA toward OCT1 was confirmed by fenoterol hepatocyte uptake experiment. Furthermore, no shift in CsA IC50 was observed with HEK293 cells transfected with OCT2 and organic anion transporter (OAT) 1 and OAT3. Short exposure (30 minutes) to 10 µM CsA produced long-lasting inhibition (at least 120 minutes) of the OCT1-mediated uptake of metformin in OCT1-HEK293 cells, which was likely attributable to the retention of CsA in the cells, as shown by the fact that inhibitory cellular concentrations of CsA were maintained long after the removal of the compound from the incubation buffer. The potent and persistent inhibitory effect after exposure to CsA warrants careful consideration in the design and interpretation of clinical OCT1 DDI studies. SIGNIFICANCE STATEMENT: Preincubation of OATP1B1 and OATP1B3 with their inhibitor may result in the enhancement of the inhibitory potency in a cell-based assay. However, limited data are available on potentiation of OCT1 inhibition by preincubation, which is a clinically relevant drug transporter. For the first time, we observed a 50-fold increase in CsA inhibitory potency against OCT1-mediated transport of metformin following a preincubation step. The CsA preincubation effect on OCT1 inhibition is substrate dependent. Moreover, the inhibition potential of CsA toward OCT1 is confirmed by hepatocyte uptake experiment. This study delivers clear evidences about the potent and persistent inhibitory effect on OCT1 after exposure to CsA. Further studies are needed to assess the effect of CsA on OCT1 drug substrates in vivo.


Assuntos
Ciclosporina/farmacologia , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Interações Medicamentosas , Células HEK293 , Hepatócitos/metabolismo , Humanos , Masculino , Metformina/farmacocinética , Transportador 1 de Cátions Orgânicos/fisiologia
5.
Drug Metab Dispos ; 46(2): 178-188, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29162614

RESUMO

Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted.


Assuntos
Biomarcadores/sangue , Ácido Homovanílico/sangue , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ácido Piridóxico/sangue , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Macaca fascicularis , Metabolômica/métodos , Probenecid/metabolismo
6.
Br J Clin Pharmacol ; 84(1): 130-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28850715

RESUMO

AIMS: BMS-823778 is an inhibitor of 11ß-hydroxysteroid dehydrogenase type-1, and thus a potential candidate for Type 2 diabetes treatment. Here, we investigated the metabolism and pharmacokinetics of BMS-823778 to understand its pharmacokinetic variations in early clinical trials. METHODS: The metabolism of BMS-823778 was characterized in multiple in vitro assays. Pharmacokinetics were evaluated in healthy volunteers, prescreened as CYP2C19 extensive metabolizers (EM) or poor metabolizers (PM), with a single oral dose of [14 C]BMS-823778 (10 mg, 80 µCi). RESULTS: Three metabolites (<5%) were identified in human hepatocytes and liver microsomes (HLM) incubations, including two hydroxylated metabolites (M1 and M2) and one glucuronide conjugate (M3). As the most abundant metabolite, M1 was formed mainly through CYP2C19. M1 formation was also correlated with CYP2C19 activities in genotyped HLM. In humans, urinary excretion of dosed radioactivity was significantly higher in EM (68.8%; 95% confidence interval 61.3%, 76.3%) than in PM (47.0%; 43.5%, 50.6%); only small portions (<2%) were present in faeces or bile from both genotypes. In plasma, BMS-823778 exposure in PM was significantly (5.3-fold, P = 0.0097) higher than in EM. Furthermore, total radioactivity exposure was significantly higher (P < 0.01) than BMS-823778 exposure in all groups, indicating the presence of metabolites. M1 was the only metabolite observed in plasma, and much lower in PM. In urine, the amount of M1 and its oxidative metabolite in EM was 7-fold of that in PM, while more glucuronide conjugates of BMS-823778 and M1 were excreted in PM. CONCLUSIONS: CYP2C19 polymorphisms significantly impacted systemic exposure and metabolism pathways of BMS-823778 in humans.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Citocromo P-450 CYP2C19/genética , Polimorfismo Genético , Piridinas/farmacocinética , Eliminação Renal/genética , Triazóis/farmacocinética , Adulto , Esquema de Medicação , Genótipo , Glucuronídeos/metabolismo , Voluntários Saudáveis , Hepatócitos/metabolismo , Humanos , Hidroxilação , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/metabolismo , Triazóis/administração & dosagem , Triazóis/sangue , Triazóis/metabolismo , Adulto Jovem
7.
Anal Chem ; 89(9): 5144-5151, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28402627

RESUMO

With the development of modern instrumentation and technologies, mass spectrometry based assays have played an important role in protein bioanalysis. We have developed a novel strategy by combining the "bottom-up" and "top-down" approaches using both high-resolution (HRMS) and selected reaction monitoring (SRM) based mass spectrometric detection to quantify a positron emission tomography (PET) detection tracer for an oncology marker. Monkey plasma samples were processed by immunocapture purification, followed by liquid chromatography (LC) with HRMS full scan analysis. Summed multiple charge states and multiple isotopes per charge state of the analyte were used during quantitation for optimized sensitivity. After the HRMS analysis, the remaining samples were digested by trypsin, followed by SRM detection. The HRMS approach provided the solution to a unique problem related to stability of the protein conjugate by quantifying the intact protein. The SRM method only measured a signature peptide generated from enzymatic digestion, but had a lower quantitation limit to meet the sensitivity requirement to assess the pharmacokinetics in a toxicology study. Both methods demonstrated good sensitivity, accuracy, precision and robustness, and the results revealed that there was no significant difference between the data sets obtained from both methods, indicating no in vivo or ex vivo degradation occurred in the incurred samples after dosing. This workflow not only provided the quantitative results for pharmacokinetic evaluation, but also revealed valuable in vivo stability information on the intact protein level.


Assuntos
Cromatografia Líquida/métodos , Fibronectinas/sangue , Fragmentos de Peptídeos/sangue , Compostos Radiofarmacêuticos/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Fibronectinas/química , Radioisótopos de Flúor , Macaca fascicularis , Masculino , Fragmentos de Peptídeos/química , Compostos Radiofarmacêuticos/química , Fluxo de Trabalho
8.
J Pharmacol Exp Ther ; 362(3): 385-394, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28645914

RESUMO

The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/metabolismo , Cromanos/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/genética , Hipoglicemiantes/farmacologia , Tiazolidinedionas/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Bile/metabolismo , Colesterol 7-alfa-Hidroxilase/biossíntese , Colesterol 7-alfa-Hidroxilase/genética , Técnicas de Inativação de Genes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Troglitazona , Regulação para Cima/efeitos dos fármacos
9.
Drug Metab Dispos ; 45(8): 908-919, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576766

RESUMO

Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.


Assuntos
Ácidos e Sais Biliares/sangue , Biomarcadores/sangue , Coproporfirinas/sangue , Sulfato de Desidroepiandrosterona/sangue , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Ácidos Palmíticos/sangue , Adolescente , Adulto , Área Sob a Curva , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Interações Medicamentosas/fisiologia , Células HEK293 , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Rifampina/farmacologia , Rosuvastatina Cálcica/farmacologia , Adulto Jovem
10.
Drug Metab Rev ; 48(4): 473-501, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27533622

RESUMO

The bioactivation of drugs is often associated with toxicological outcomes; however, for most cases, the causal relationship between bioactivation and toxicity is not well established despite extensive research that attempts to elucidate the mechanisms leading to the formation of chemically reactive species, presumably the initial step towards adverse reactions. Due to rapid advancement in the research of cytochrome P450s (CYPs) and the prevalence of CYP involvement in the metabolic clearance of pharmaceuticals, CYP-mediated bioactivation is widely investigated and reviewed, while non-CYP-mediated bioactivation has not been emphasized. The widespread use of metabolic stability screening in drug discovery, however, has led to the identification of new chemical entities that rely on non-CYP enzymes for clearance, and the number of drugs that undergo metabolism via these enzymes has increased. Non-CYP enzymes can be divided into four general categories according to their enzymatic function, namely, oxidative, reductive, conjugative and hydrolytic. The aim of this review is to complement the existing literature on CYP-mediated metabolism by focusing on bioactivation mediated non-CYP enzymes and provide representative examples in each category.


Assuntos
Biotransformação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidrólise , Desintoxicação Metabólica Fase II , Oxirredução
11.
Chem Res Toxicol ; 29(12): 2040-2057, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989144

RESUMO

The formation of drug-protein adducts is considered an important feature in the pharmacological and toxicological profiles of many drugs. Mechanistic insights into the role of specific protein adduct formation in pharmacology and toxicology remain scarce, partly due to the availability of tools to identify and characterize the specific protein adducts, and partly due to the scarcity of relevant in vitro and in vivo predictive models. This review serves to provide a review on the current state of science on the chemistry, toxicology, and methods of detection and characterization of drug-protein adducts and to offer some perspective on the future directions of research into the role of protein adducts in drug effects and toxicity.


Assuntos
Preparações Farmacêuticas/química , Proteínas/química , Testes de Toxicidade , Animais , Humanos , Modelos Biológicos
12.
Biopharm Drug Dispos ; 37(5): 276-86, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27059119

RESUMO

The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Pravastatina/farmacocinética , Ácido Taurocólico/farmacocinética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Anticolesterolemiantes/sangue , Anticolesterolemiantes/farmacocinética , Ácidos e Sais Biliares/metabolismo , Colagogos e Coleréticos/sangue , Colagogos e Coleréticos/farmacocinética , Fígado/metabolismo , Masculino , Pravastatina/sangue , Ratos Sprague-Dawley , Ratos Transgênicos , Ácido Taurocólico/sangue
13.
Chem Res Toxicol ; 28(4): 775-81, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25654186

RESUMO

The detection and characterization of low-level protein modifications in a complex system without a methodology for modification enrichment is a very challenging task. This study describes a high-resolution LC/MS-based background subtraction methodology for the unbiased detection and identification of acetaminophen-bound proteins formed in incubations with mouse liver microsomes. The microsomal incubations were conducted using both acetaminophen and [(13)C2,(15)N]acetaminophen at a drug concentration of 200 µM. After tryptic digestion and high-resolution LC/MS analysis, data from the two drug treatment groups were each background-subtracted against the other. Thus, peptide signals that were identical in both groups were effectively canceled out, and drug-bound peptide peaks, differing in masses between the groups because of the isotopic mass shift, were retained after background subtraction and became highlighted in the resultant base peak ion chromatograms. Follow-up MS/MS experiments with these drug-bound peptides led to the identification of three acetaminophen-bound proteins: microsomal glutathione S-transferase, oligosaccharyltransferase subunit ribophorin I, and argininosuccinate synthetase. These initial findings demonstrate the utility of the methodology and may shed new light on the mechanism of acetaminophen-induced hepatotoxicity. The approach is potentially applicable to similar tasks of identification of protein modifications in other complex biological systems.


Assuntos
Acetaminofen/metabolismo , Argininossuccinato Sintase/metabolismo , Espectrometria de Massas/métodos , Microssomos Hepáticos/metabolismo , Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Camundongos , Microssomos Hepáticos/enzimologia , Proteínas/química
14.
Anal Chem ; 86(15): 7642-9, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25003239

RESUMO

The covalent conjugation of polyethylene glycol (PEG, typical MW > 10k) to therapeutic peptides and proteins is a well-established approach to improve their pharmacokinetic properties and diminish the potential for immunogenicity. Even though PEG is generally considered biologically inert and safe in animals and humans, the slow clearance of large PEGs raises concerns about potential adverse effects resulting from PEG accumulation in tissues following chronic administration, particularly in the central nervous system. The key information relevant to the issue is the disposition and fate of the PEG moiety after repeated dosing with PEGylated proteins. Here, we report a novel quantitative method utilizing LC-MS/MS coupled with in-source CID that is highly selective and sensitive to PEG-related materials. Both (40K)PEG and a tool PEGylated protein (ATI-1072) underwent dissociation in the ionization source of mass spectrometer to generate a series of PEG-specific ions, which were subjected to further dissociation through conventional CID. To demonstrate the potential application of the method to assess PEG biodistribution following PEGylated protein administration, a single dose study of ATI-1072 was conducted in rats. Plasma and various tissues were collected, and the concentrations of both (40K)PEG and ATI-1072 were determined using the LC-MS/MS method. The presence of (40k)PEG in plasma and tissue homogenates suggests the degradation of PEGylated proteins after dose administration to rats, given that free PEG was absent in the dosing solution. The method enables further studies for a thorough characterization of disposition and fate of PEGylated proteins.


Assuntos
Cromatografia Líquida/métodos , Polietilenoglicóis/análise , Proteínas/química , Espectrometria de Massas em Tandem/métodos , Animais , Ratos
15.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675031

RESUMO

Lysozyme, a common antimicrobial agent, is widely used in the food, biopharmaceutical, chemical, and medicine fields. Rapid and effective isolation of lysozymes is an everlasting topic. In this work, ethylene vinyl alcohol (EVOH) copolymer nanofibrous membranes with a gradient porous structure used for lysozyme adsorption were prepared through layer-by-layer nanofiber wet-laying and a cost-efficient ultraviolet (UV)-assisted graft-modification method, where benzophenone was used as an initiator and 2-acrylamide-2-methylpropanesulfonic acid as a modifying monomer. As indicated in the Fourier Transform Infrared (FTIR) and X-ray photoelectric energy spectrometer (XPS) investigation, sulfonic acid groups were introduced on the surface of the modified nanofibrous membrane, which possessed the ability to adsorb lysozyme. Compared with membranes with homogenous porous structures, membranes with a gradient porous structure present higher static (335 mg/g) and dynamic adsorption capacities (216.3 mg/g). Meanwhile, the adsorption capacity remained high after five cycles of the adsorption-desorption process. The results can be attributed to the gradient porous structure rather than the highest porosity and specific surface area. This suggests that the membrane with comprehensive separation performance can be designed from the view of the transmembrane porous structure, which is of significance for the development of next-generation advanced chromatographic membranes.

16.
Drug Metab Dispos ; 41(4): 827-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23382458

RESUMO

The studies reported here were conducted to investigate the transport characteristics of apixaban (1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide) and to understand the impact of transporters on apixaban distribution and disposition. In human permeability glycoprotein (P-gp)- and breast cancer resistance protein (BCRP)-cDNA-transfected cell monolayers as well as Caco-2 cell monolayers, the apparent efflux ratio of basolateral-to-apical (PcB-A) versus apical-to-basolateral permeability (PcA-B) of apixaban was >10. The P-gp- and BCRP-facilitated transport of apixaban was concentration- and time-dependent and did not show saturation over a wide range of concentrations (1-100 µM). The efflux transport of apixaban was also demonstrated by the lower mucosal-to-serosal permeability than that of the serosal-to-mucosal direction in isolated rat jejunum segments. Apixaban did not inhibit digoxin transport in Caco-2 cells. Ketoconazole decreased the P-gp-mediated apixaban efflux in Caco-2 and the P-gp-cDNA-transfected cell monolayers, but did not affect the apixaban efflux to a meaningful extent in the BCRP-cDNA-transfected cell monolayers. Coincubation of a P-gp inhibitor (ketoconazole or cyclosporin A) and a BCRP inhibitor (Ko134) provided more complete inhibition of apixaban efflux in Caco-2 cells than separate inhibition by individual inhibitors. Naproxen inhibited apixaban efflux in Caco-2 cells but showed only a minimal effect on apixaban transport in the BCRP-transfected cells. Naproxen was the first nonsteroidal antiinflammatory drug that was demonstrated as a weak P-gp inhibitor. These results demonstrate that apixaban is a substrate for efflux transporters P-gp and BCRP, which can help explain its low brain penetration, and low fetal exposures and high milk excretion in rats.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrinolíticos/farmacocinética , Proteínas de Neoplasias/metabolismo , Pirazóis/farmacocinética , Piridonas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2/metabolismo , Linhagem Celular Transformada , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Digoxina/farmacocinética , Dicetopiperazinas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Cetoconazol/farmacologia , Masculino , Naproxeno/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Ratos
17.
Bioorg Med Chem Lett ; 23(1): 330-5, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23177783
18.
Bioorg Med Chem Lett ; 23(13): 3914-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23683593

RESUMO

The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure-activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.


Assuntos
Isoquinolinas/farmacologia , Pirazinas/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Modelos Moleculares , Estrutura Molecular , Pirazinas/síntese química , Pirazinas/química , Ratos , Relação Estrutura-Atividade
19.
Drug Metab Dispos ; 40(1): 219-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21989950

RESUMO

Brivanib alaninate, the L-alanine ester prodrug of brivanib, is currently being developed as an anticancer agent. In humans, brivanib alaninate is rapidly hydrolyzed to brivanib. Prominent biotransformation pathways of brivanib included oxidation and direct sulfate conjugation. A series of in vitro studies were conducted to identify the human esterases involved in the prodrug hydrolysis and to identify the primary human cytochrome P450 and sulfotransferase (SULT) enzymes involved in the metabolism of brivanib. Brivanib alaninate was efficiently converted to brivanib in the presence of either human carboxylesterase 1 or carboxylesterase 2. Because esterases are ubiquitous, it is likely that multiple esterases are involved in the hydrolysis. Oxidation of brivanib in human liver microsomes (HLM) primarily formed a hydroxylated metabolite (M7). Incubation of brivanib with human cDNA-expressed P450 enzymes and with HLM in the presence of selective chemical inhibitors and monoclonal P450 antibodies demonstrated that CYP1A2 and CYP3A4 were the major contributors for the formation of M7. Direct sulfation of brivanib was catalyzed by multiple SULT enzymes, including SULT1A1, SULT1B1, SULT2A1, SULT1A3, and SULT1E1. Because the primary in vitro oxidative metabolite (M7) was not detected in humans after oral doses of brivanib alaninate, further metabolism studies of M7 in HLM and human liver cytosol were performed. The data demonstrated that M7 was metabolized to the prominent metabolites observed in humans. Overall, multiple enzymes are involved in the metabolism of brivanib, suggesting a low potential for drug-drug interactions either through polymorphism or through inhibition of a particular drug-metabolizing enzyme.


Assuntos
Alanina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfotransferases/metabolismo , Triazinas/metabolismo , Alanina/química , Alanina/metabolismo , Biotransformação/fisiologia , Citosol/enzimologia , Humanos , Oxirredução , Triazinas/química
20.
Drug Metab Dispos ; 40(12): 2374-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22983304

RESUMO

Brivanib alaninate is an orally administered alanine prodrug of brivanib, a dual inhibitor of the vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) signaling pathways. It is currently in clinical trials for the treatment of hepatocellular carcinoma and colorectal cancer. Brivanib has a single asymmetric center derived from a secondary alcohol. The potential for chiral inversion was investigated in incubations with liver subcellular fractions and in animals and humans after oral doses of brivanib alaninate. Incubations of [¹4C]brivanib alaninate with liver microsomes and cytosols from rats, monkeys, and humans followed by chiral chromatography resulted in two radioactive peaks, corresponding to brivanib and its enantiomer. The percentage of the enantiomeric metabolite relative to brivanib in microsomal and cytosolic incubations of different species in the presence of NADPH ranged from 11.6 to 15.8 and 0.8 to 3.1%, respectively. The proposed mechanism of inversion involves the oxidation of brivanib to a ketone metabolite, which is subsequently reduced to brivanib and its enantiomer. After oral doses of brivanib alaninate to rats and monkeys, the enantiomeric metabolite was a prominent drug-related component in plasma, with the percentages of area under the curve (AUC) at 94.7 and 39.7%, respectively, relative to brivanib. In humans, the enantiomeric metabolite was a minor circulating component, with the AUC <3% of brivanib. Pharmacological studies indicated that brivanib and its enantiomer had similar potency toward the inhibition of VEGF receptor-2 and FGF receptor-1 kinases. Because of low plasma concentration in humans, the enantiomeric metabolite was not expected to contribute significantly to target-related pharmacology of brivanib. Moreover, adequate exposure in the toxicology species suggested no specific safety concerns with respect to exposure to the enantiomeric metabolite.


Assuntos
Alanina/análogos & derivados , Triazinas/farmacocinética , Administração Oral , Adolescente , Adulto , Alanina/efeitos adversos , Alanina/farmacocinética , Alanina/farmacologia , Animais , Área Sob a Curva , Citosol/metabolismo , Feminino , Humanos , Cetonas/metabolismo , Macaca fascicularis , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , NADP/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Triazinas/efeitos adversos , Triazinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA