Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916453

RESUMO

Mangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata). We found that biogeochemical cycling took entirely different pathways for S. apetala and K. obovata. Blue carbon accumulation and the proportion of plant-carbon for native mangroves were high, with microbes (dominated by K-strategists) allocating the assimilated-carbon to starch and sucrose metabolism. Conversely, microbes with S. apetala adopted an r-strategy and increased protein- and nucleotide-biosynthetic potentials. These divergent biogeochemical pathways were related to leaf characteristics, with S. apetala leaves characterized by lower molecular-weight, C:N ratio, and lignin content than K. obovata. Moreover, anaerobic-degradation potentials for lignin were high in old-aged soils, but the overall degradation potentials of plant carbon were age-independent, explaining that S. apetala age had no significant influences on the contribution of plant-carbon to blue carbon. We propose that for introduced mangroves, newly fallen leaves release nutrient-rich organic matter that favors growth of r-strategists, which rapidly consume carbon to fuel growth, increasing the proportion of microbial-carbon to blue carbon. In contrast, lignin-rich native mangrove leaves shape K-strategist-dominated microbial communities, which grow slowly and store assimilated-carbon in cells, ultimately promoting the contribution of plant-carbon to the remarkable accumulation of blue carbon. Our study provides new insights into the molecular mechanisms of microbial community responses during reforestation in mangrove ecosystems.


Assuntos
Sequestro de Carbono , Ecossistema , Lignina , Folhas de Planta , Carbono , Solo , Áreas Alagadas
2.
J Clean Prod ; 340: 130753, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36032562

RESUMO

With the global spread of the COVID-19 pandemic, the water pollution caused by extensive production and application of COVID-19 related drugs has aroused growing attention. Herein, a novel biochar-supported red mud catalyst (RM-BC) containing abundant free hydroxyl groups was synthesized. The RM-BC activated persulfate process was firstly put forward to degrade COVID-19 related drugs, including arbidol (ARB), chloroquine phosphate, hydroxychloroquine sulfate, and acyclovir. Highly effective removal of these pharmaceuticals was achieved and even 100% of ARB was removed within 12 min at optimum conditions. Mechanism study indicated that SO4 •- and HO• were the predominant radicals, and these radicals were responsible for the formation of DMPOX in electron spin resonance experiments. Fe species (Fe0 and Fe3O4) and oxygen-containing functional groups in RM-BC played crucial roles in the elimination of ARB. Effects of degradation conditions and several common water matrices were also investigated. Finally, the degradation products of ARB were identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and possible degradation pathways were proposed. This study demonstrated that RM-BC/PS system would have great potential for the removal of COVID-19 related drug residues in water by the catalyst synthesized from the solid waste.

3.
Environ Res ; 202: 111636, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245733

RESUMO

The aromatic arsenical roxarsone (ROX) has been used as feed additive for decades worldwide. The past or present application of animal manure containing ROX in paddy fields results in arsenic (As) accumulation in rice grain. However, the degradation and transformation mechanisms of ROX in paddy soil which determine As bioavailability and uptake by rice are still unclear. The current study investigated the variation of As speciation and soil enzyme activities in ROX-treated soils under flooded and non-flooded conditions for six months. Our results showed that 70.2% of ROX persisted in non-flooded paddy soils after 180 d while ROX degraded completely within 7 d in flooded soils. The rapid degradation of ROX under flooded conditions owed to the enhanced biotic transformation that was caused by the low Eh and the predominant presence of Clostridium spp. and Bacillus spp. ROX was not only transformed to As(III) and As(V) in non-flooded soils but also to 3-amino-4-hydroxyphenylarsonic acid and methyl arsenicals in flooded soils. The degradation products significantly inhibited soil enzyme activities for 7-30 d, but the inhibition effects disappeared after 90 d due to the sorption of transformed As products to amorphous Fe oxides. This study provides new insights into the flooding effect on ROX fate in paddy fields, which is important for the management of animal waste and risk control on polluted sites.


Assuntos
Arsênio , Oryza , Roxarsona , Poluentes do Solo , Animais , Arsênio/análise , Solo , Poluentes do Solo/análise , Água
4.
Water Res ; 262: 122084, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018578

RESUMO

Global land-use changes alter the delivery of fluvial dissolved organic matter (DOM) along land-to-sea continuum. To study how spatial variations in watershed anthropogenic disturbances control chemodiversity and reactivity of DOM exported to oceans, we used fluorescent and ultra-high-resolution mass spectrometry to investigate spatial and seasonal variations of DOM properties along two subtropical coastal rivers with contrasting anthropogenic land-use distributions (North and West tributaries of Jiulong River, southeast China). Dissolved organic carbon (DOC) concentration and humic- and protein-like fluorescent DOM (FDOM) intensities were high in the mixed urban-agricultural impacted upper North River and lower West River. DOM molecular signatures suggested that the urban-sourced DOM is dominated by bio-labile, S-rich compounds, whereas the agricultural-sourced DOM is characterized by a mixture of bio-labile CHONS and bio-refractory CHON. This anthropogenic-induced spatial variation in DOM signatures was especially prominent during the dry season. Molecular analysis indicated that heteroatomic-containing (phosphorus-sulfur-nitrogen) DOM compounds are more biologically degradable, whereas most of the heteroatom-depleted and highly unsaturated CHO was stable during transport. Due to a longer transit distance and reservoir impoundment in North River, the urban-sourced aliphatic compounds were largely microbially removed or transformed into bio-refractory components, resulting in lower DOC fluxes and an increase of recalcitrance in the DOM exported to the ocean. Conversely, shorter transit times for anthropogenic inputs from the middle/lower West River increased watershed yield and export fluxes of DOC with higher bio-lability. Our study documents that transit history plays a crucial role in assessing the fate of anthropogenic DOM along the land-to-ocean continuum.


Assuntos
Oceanos e Mares , Rios , Rios/química , China , Monitoramento Ambiental , Estações do Ano , Compostos Orgânicos/análise , Efeitos Antropogênicos , Carbono/análise , Água do Mar/química
5.
Water Res ; 250: 121010, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142507

RESUMO

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Assuntos
Alcaloides , Cianobactérias , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Fósforo/metabolismo , Uracila
6.
Environ Sci Pollut Res Int ; 27(17): 21084-21097, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266614

RESUMO

A series of environmental protective policies have been taken recently in the Pearl River Estuary (PRE) to alleviate water pollution; however, their influence on the reduction of heavy metals in estuarine water has not been known. This study selected Guangzhou as a representative city in the PRE and collected estuarine water monthly from 2008 to 2017 to track the variation of As, Hg, Pb, Cd, Cu, Zn, and Se. During the last decade, the high time-resolved record showed that the concentration of Hg, Pb, Cd, Cu, and Zn in estuarine water reduced by 39.5%, 91.0%, 86.2%, 74.6%, and 97.3%, respectively. However, the concentration of As kept in a stable range (1.89-2.69 µg L-1) and Se (0.17-0.65 µg L-1) increased slightly. The principal component analysis (PCA) and absolute principal component scores-multiple linear regression (APCS-MLR) results suggested that the upstream industrial effluents were major sources for Hg (45.5-92.7%), Pb (47.3-100%), Cd (42.0-90.6%), Cu (85.5-100%), and Zn (100%) and the geogenic source was major origin for As (84.6-98.3%) and Se (0-67.5%). The risk quotient of Hg, Pb, Cd, Cu, and Zn to aquatic organisms largely decreased from 0.03, 0.59, 0.03, 2.06, and 0.26 in 2008 to 0.02, 0.05, 0.006, 0.52, and 0.007 in 2017, respectively. The effective control of heavy metal pollution in the study area can be primarily due to the relocation of hundreds of polluting factories during the last decade.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Medição de Risco , Rios , Água , Qualidade da Água
7.
Sci Rep ; 9(1): 2305, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783143

RESUMO

Recent explorations of scientific ocean drilling have revealed the presence of microbial communities persisting in sediments down to ~2.5 km below the ocean floor. However, our knowledge of these microbial populations in the deep subseafloor sedimentary biosphere remains limited. Here, we present a cultivation experiment of 2-km-deep subseafloor microbial communities in 20-million-year-old lignite coalbeds using a continuous-flow bioreactor operating at 40 °C for 1029 days with lignite particles as the major energy source. Chemical monitoring of effluent samples via fluorescence emission-excitation matrices spectroscopy and stable isotope analyses traced the transformation of coalbed-derived organic matter in the dissolved phase. Hereby, the production of acetate and 13C-depleted methane together with the increase and transformation of high molecular weight humics point to an active lignite-degrading methanogenic community present within the bioreactor. Electron microscopy revealed abundant microbial cells growing on the surface of lignite particles. Small subunit rRNA gene sequence analysis revealed that diverse microorganisms grew in the bioreactor (e.g., phyla Proteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Bacteroidetes, Spirochaetes, Tenericutes, Ignavibacteriae, and SBR1093). These results indicate that activation and adaptive growth of 2-km-deep microbes was successfully accomplished using a continuous-flow bioreactor, which lays the groundwork to explore networks of microbial communities of the deep biosphere and their physiologies.


Assuntos
Reatores Biológicos/microbiologia , Genes de RNAr/genética , Microbiota/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA