Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Mol Biol ; 341(1): 271-9, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15312778

RESUMO

Proteomics was used to identify a protein encoded by ORF 3a in a SARS-associated coronavirus (SARS-CoV). Immuno-blotting revealed that interchain disulfide bonds might be formed between this protein and the spike protein. ELISA indicated that sera from SARS patients have significant positive reactions with synthesized peptides derived from the 3a protein. These results are concordant with that of a spike protein-derived peptide. A tendency exists for co-mutation between the 3a protein and the spike protein of SARS-CoV isolates, suggesting that the function of the 3a protein correlates with the spike protein. Taken together, the 3a protein might be tightly correlated to the spike protein in the SARS-CoV functions. The 3a protein may serve as a new clinical marker or drug target for SARS treatment.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Dissulfetos/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Filogenia , Proteômica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus , Células Vero , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Viroporinas
2.
Genomics Proteomics Bioinformatics ; 1(3): 180-92, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15629030

RESUMO

Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.


Assuntos
Genoma Viral , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Haplótipos , Humanos , Mutação , Fases de Leitura Aberta , Filogenia
3.
Chin Sci Bull ; 48(13): 1293-1296, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-32214706

RESUMO

Beijing has been severely affected by SARS, and SARS-associated coronavirus has been confirmed as its cause. However, clinical and experimental evidence implicates the possibility of co-infection. In this report, reovirus was isolated from throat swabs of SARS patients, including the first case in Beijing and her mother. Identification with the electron microscopy revealed the characteristic features of reovirus. 24 of 38 samples from other SARS cases were found to have serologic responses to the reovirus. Primers designed for reovirus have amplified several fragments of DNA, one of which was sequenced (S2 gene fragment), which indicates it as a unique reovirus (orthoreovirus). Preliminary animal experiment showed that inoculation of the reovirus in mice caused death with atypical pneumonia. Nevertheless, the association of reovirus with SARS outbreak requires to be further investigated.

4.
Chin Sci Bull ; 48(10): 941-948, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-32214698

RESUMO

The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS-associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to be involved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the M protein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides no evidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of other possible SARS-related pathogen(s).

5.
Cell Biochem Biophys ; 70(1): 481-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24748176

RESUMO

The objective of the study was to investigate the effects of adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) on peripheral circulation of chronic obstructive pulmonary disease (COPD) patients with respiratory failure. 86 COPD patients with respiratory failure were recruited in this study. Self-control method was used to compare the effect of ASV and SIMV on the parameters of ventilation machine, heart rate, blood pressure, central venous pressure (CVP), and blood gas markers. When the patients in ASV and SIMV groups were compared, respiratory rate, tidal volume, and peak airway pressure (PIP) showed significant difference. When minute ventilation (MV) was compared, no significant difference was shown. When peripheral circulation parameters were compared, peripheral circulation heart rate, SBP, DBP, and CVP showed significant difference. Compared with SIMV group, PaO2, pH, and SaO2 values were remarkably increased (P < 0.01) while no significant difference was found for partial pressure of carbon dioxide (pCO2) when two groups were compared. In conclusion, when mechanical ventilation was used in COPD patients with respiratory failure, ASV can significantly improve clinical outcomes.


Assuntos
Circulação Sanguínea , Gasometria , Ventilação com Pressão Positiva Intermitente/métodos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/terapia , Insuficiência Respiratória/complicações , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Insuficiência Respiratória/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA