Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738286

RESUMO

Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.


Assuntos
Cromatina , Entropia , Células-Tronco Pluripotentes Induzidas , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Protoplastos/metabolismo , Reprogramação Celular/genética , Histonas/metabolismo , Histonas/genética , Células Vegetais/metabolismo , Epigênese Genética
2.
BMC Biol ; 22(1): 58, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468285

RESUMO

BACKGROUND: Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS: In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS: We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Diferenciação Celular/genética , Divisão Celular , Análise de Célula Única/métodos
3.
BMC Bioinformatics ; 25(1): 245, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030497

RESUMO

BACKGROUND: Inference of Gene Regulatory Networks (GRNs) is a difficult and long-standing question in Systems Biology. Numerous approaches have been proposed with the latest methods exploring the richness of single-cell data. One of the current difficulties lies in the fact that many methods of GRN inference do not result in one proposed GRN but in a collection of plausible networks that need to be further refined. In this work, we present a Design of Experiment strategy to use as a second stage after the inference process. It is specifically fitted for identifying the next most informative experiment to perform for deciding between multiple network topologies, in the case where proposed GRNs are executable models. This strategy first performs a topological analysis to reduce the number of perturbations that need to be tested, then predicts the outcome of the retained perturbations by simulation of the GRNs and finally compares predictions with novel experimental data. RESULTS: We apply this method to the results of our divide-and-conquer algorithm called WASABI, adapt its gene expression model to produce perturbations and compare our predictions with experimental results. We show that our networks were able to produce in silico predictions on the outcome of a gene knock-out, which were qualitatively validated for 48 out of 49 genes. Finally, we eliminate as many as two thirds of the candidate networks for which we could identify an incorrect topology, thus greatly improving the accuracy of our predictions. CONCLUSION: These results both confirm the inference accuracy of WASABI and show how executable gene expression models can be leveraged to further refine the topology of inferred GRNs. We hope this strategy will help systems biologists further explore their data and encourage the development of more executable GRN models.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Simulação por Computador , Modelos Genéticos
4.
BMC Bioinformatics ; 25(1): 270, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164646

RESUMO

BACKGROUND: In the present work, we aimed at modeling a relaxation experiment which consists in selecting a subfraction of a cell population and observing the speed at which the entire initial distribution for a given marker is reconstituted. METHODS: For this we first proposed a modification of a previously published mechanistic two-state model of gene expression to which we added a state-dependent proliferation term. This results in a system of two partial differential equations. Under the assumption of a linear dependence of the proliferation rate with respect to the marker level, we could derive the asymptotic profile of the solutions of this model. RESULTS: In order to confront our model with experimental data, we generated a relaxation experiment of the CD34 antigen on the surface of TF1-BA cells, starting either from the highest or the lowest CD34 expression levels. We observed in both cases that after approximately 25 days the distribution of CD34 returns to its initial stationary state. Numerical simulations, based on parameter values estimated from the dataset, have shown that the model solutions closely align with the experimental data from the relaxation experiments. CONCLUSION: Altogether our results strongly support the notion that cells should be seen and modeled as probabilistic dynamical systems.


Assuntos
Antígenos CD34 , Humanos , Antígenos CD34/metabolismo , Expressão Gênica/genética , Modelos Genéticos , Proliferação de Células/genética
5.
PLoS Comput Biol ; 19(3): e1010962, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972296

RESUMO

The rise of single-cell data highlights the need for a nondeterministic view of gene expression, while offering new opportunities regarding gene regulatory network inference. We recently introduced two strategies that specifically exploit time-course data, where single-cell profiling is performed after a stimulus: HARISSA, a mechanistic network model with a highly efficient simulation procedure, and CARDAMOM, a scalable inference method seen as model calibration. Here, we combine the two approaches and show that the same model driven by transcriptional bursting can be used simultaneously as an inference tool, to reconstruct biologically relevant networks, and as a simulation tool, to generate realistic transcriptional profiles emerging from gene interactions. We verify that CARDAMOM quantitatively reconstructs causal links when the data is simulated from HARISSA, and demonstrate its performance on experimental data collected on in vitro differentiating mouse embryonic stem cells. Overall, this integrated strategy largely overcomes the limitations of disconnected inference and simulation.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Animais , Camundongos , Redes Reguladoras de Genes/genética , Simulação por Computador , Perfilação da Expressão Gênica/métodos
6.
In Silico Biol ; 15(1-2): 11-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927254

RESUMO

Single cell transcriptomics has recently seen a surge in popularity, leading to the need for data analysis pipelines that are reproducible, modular, and interoperable across different systems and institutions.To meet this demand, we introduce scAN1.0, a processing pipeline for analyzing 10X single cell RNA sequencing data. scAN1.0 is built using the Nextflow DSL2 and can be run on most computational systems. The modular design of Nextflow pipelines enables easy integration and evaluation of different blocks for specific analysis steps.We demonstrate the usefulness of scAN1.0 by showing its ability to examine the impact of the mapping step during the analysis of two datasets: (i) a 10X scRNAseq of a human pituitary gonadotroph tumor dataset and (ii) a murine 10X scRNAseq acquired on CD8 T cells during an immune response.


Assuntos
RNA-Seq , Análise da Expressão Gênica de Célula Única , Software , Conjuntos de Dados como Assunto , Humanos , Animais , Camundongos , Neoplasias Hipofisárias/genética , Linfócitos T CD8-Positivos , Perfilação da Expressão Gênica , Biologia Computacional , Fluxo de Trabalho
7.
BMC Biol ; 20(1): 155, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794592

RESUMO

BACKGROUND: According to Waddington's epigenetic landscape concept, the differentiation process can be illustrated by a cell akin to a ball rolling down from the top of a hill (proliferation state) and crossing furrows before stopping in basins or "attractor states" to reach its stable differentiated state. However, it is now clear that some committed cells can retain a certain degree of plasticity and reacquire phenotypical characteristics of a more pluripotent cell state. In line with this dynamic model, we have previously shown that differentiating cells (chicken erythrocytic progenitors (T2EC)) retain for 24 h the ability to self-renew when transferred back in self-renewal conditions. Despite those intriguing and promising results, the underlying molecular state of those "reverting" cells remains unexplored. The aim of the present study was therefore to molecularly characterize the T2EC reversion process by combining advanced statistical tools to make the most of single-cell transcriptomic data. For this purpose, T2EC, initially maintained in a self-renewal medium (0H), were induced to differentiate for 24H (24H differentiating cells); then, a part of these cells was transferred back to the self-renewal medium (48H reverting cells) and the other part was maintained in the differentiation medium for another 24H (48H differentiating cells). For each time point, cell transcriptomes were generated using scRT-qPCR and scRNAseq. RESULTS: Our results showed a strong overlap between 0H and 48H reverting cells when applying dimensional reduction. Moreover, the statistical comparison of cell distributions and differential expression analysis indicated no significant differences between these two cell groups. Interestingly, gene pattern distributions highlighted that, while 48H reverting cells have gene expression pattern more similar to 0H cells, they are not completely identical, which suggest that for some genes a longer delay may be required for the cells to fully recover. Finally, sparse PLS (sparse partial least square) analysis showed that only the expression of 3 genes discriminates 48H reverting and 0H cells. CONCLUSIONS: Altogether, we show that reverting cells return to an earlier molecular state almost identical to undifferentiated cells and demonstrate a previously undocumented physiological and molecular plasticity during the differentiation process, which most likely results from the dynamic behavior of the underlying molecular network.


Assuntos
Transcriptoma , Diferenciação Celular/genética
8.
BMC Biol ; 20(1): 60, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260165

RESUMO

BACKGROUND: Mature blood cells arise from hematopoietic stem cells in the bone marrow by a process of differentiation along one of several different lineage trajectories. This is often represented as a series of discrete steps of increasing progenitor cell commitment to a given lineage, but as for differentiation in general, whether the process is instructive or stochastic remains controversial. Here, we examine this question by analyzing single-cell transcriptomic data from human bone marrow cells, assessing cell-to-cell variability along the trajectories of hematopoietic differentiation into four different types of mature blood cells. The instructive model predicts that cells will be following the same sequence of instructions and that there will be minimal variability of gene expression between them throughout the process, while the stochastic model predicts a role for cell-to-cell variability when lineage commitments are being made. RESULTS: Applying Shannon entropy to measure cell-to-cell variability among human hematopoietic bone marrow cells at the same stage of differentiation, we observed a transient peak of gene expression variability occurring at characteristic points in all hematopoietic differentiation pathways. Strikingly, the genes whose cell-to-cell variation of expression fluctuated the most over the course of a given differentiation trajectory are pathway-specific genes, whereas genes which showed the greatest variation of mean expression are common to all pathways. Finally, we showed that the level of cell-to-cell variation is increased in the most immature compartment of hematopoiesis in myelodysplastic syndromes. CONCLUSIONS: These data suggest that human hematopoietic differentiation could be better conceptualized as a dynamical stochastic process with a transient stage of cellular indetermination, and strongly support the stochastic view of differentiation. They also highlight the need to consider the role of stochastic gene expression in complex physiological processes and pathologies such as cancers, paving the way for possible noise-based therapies through epigenetic regulation.


Assuntos
Epigênese Genética , Hematopoese , Diferenciação Celular/genética , Entropia , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos
9.
BMC Bioinformatics ; 22(1): 478, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607573

RESUMO

BACKGROUND: Nonlinear mixed effects models provide a way to mathematically describe experimental data involving a lot of inter-individual heterogeneity. In order to assess their practical identifiability and estimate confidence intervals for their parameters, most mixed effects modelling programs use the Fisher Information Matrix. However, in complex nonlinear models, this approach can mask practical unidentifiabilities. RESULTS: Herein we rather propose a multistart approach, and use it to simplify our model by reducing the number of its parameters, in order to make it identifiable. Our model describes several cell populations involved in the in vitro differentiation of chicken erythroid progenitors grown in the same environment. Inter-individual variability observed in cell population counts is explained by variations of the differentiation and proliferation rates between replicates of the experiment. Alternatively, we test a model with varying initial condition. CONCLUSIONS: We conclude by relating experimental variability to precise and identifiable variations between the replicates of the experiment of some model parameters.


Assuntos
Algoritmos , Eritropoese , Modelos Biológicos , Dinâmica não Linear , Fases de Leitura
10.
In Silico Biol ; 14(1-2): 13-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33554899

RESUMO

To develop vaccines it is mandatory yet challenging to account for inter-individual variability during immune responses. Even in laboratory mice, T cell responses of single individuals exhibit a high heterogeneity that may come from genetic backgrounds, intra-specific processes (e.g. antigen-processing and presentation) and immunization protocols.To account for inter-individual variability in CD8 T cell responses in mice, we propose a dynamical model coupled to a statistical, nonlinear mixed effects model. Average and individual dynamics during a CD8 T cell response are characterized in different immunization contexts (vaccinia virus and tumor). On one hand, we identify biological processes that generate inter-individual variability (activation rate of naive cells, the mortality rate of effector cells, and dynamics of the immunogen). On the other hand, introducing categorical covariates to analyze two different immunization regimens, we highlight the steps of the response impacted by immunogens (priming, differentiation of naive cells, expansion of effector cells and generation of memory cells). The robustness of the model is assessed by confrontation to new experimental data.Our approach allows to investigate immune responses in various immunization contexts, when measurements are scarce or missing, and contributes to a better understanding of inter-individual variability in CD8 T cell immune responses.


Assuntos
Linfócitos T CD8-Positivos , Vaccinia virus , Animais , Antígenos , Imunização , Camundongos , Vacinação
11.
Haematologica ; 106(1): 111-122, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001529

RESUMO

Chronic myelogenous leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the bone marrow of patients having achieved remission under treatment. We demonstrate by single-cell RNA-Seq analysis that a sub-fraction of surviving BMPR1B+ leukemic stem cells are co-enriched in BMP signaling, quiescence and stem cell signatures, without modulation of the canonical BMP target genes, but enrichment in actors of the Jak2/Stat3 signaling pathway. Indeed, based on a new model of persisting CD34+CD38- leukemic stem cells, we show that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways. Interestingly, we reveal that only the BMPR1B+ cells adhering to stromal cells display a quiescent status. Surprisingly, this quiescence is induced by treatment, while non-adherent BMPR1B+ cells treated with tyrosine kinase inhibitors continued to proliferate. The subsequent targeting of BMPR1B and Jak2 pathways decreased quiescent leukemic stem cells by promoting their cell cycle re-entry and differentiation. Moreover, while Jak2-inhibitors alone increased BMP4 production by mesenchymal cells, the addition of the newly described BMPR1B inhibitor (E6201) impaired BMP4-mediated production by stromal cells. Altogether, our data demonstrate that targeting both BMPR1B and Jak2/Stat3 efficiently impacts persisting and dormant leukemic stem cells hidden in their bone marrow microenvironment.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Células-Tronco Neoplásicas , Proteína Morfogenética Óssea 4 , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proteínas de Fusão bcr-abl/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases , Fator de Transcrição STAT3/genética , Microambiente Tumoral
12.
J Math Biol ; 83(5): 59, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739605

RESUMO

Differentiation is the process whereby a cell acquires a specific phenotype, by differential gene expression as a function of time. This is thought to result from the dynamical functioning of an underlying Gene Regulatory Network (GRN). The precise path from the stochastic GRN behavior to the resulting cell state is still an open question. In this work we propose to reduce a stochastic model of gene expression, where a cell is represented by a vector in a continuous space of gene expression, to a discrete coarse-grained model on a limited number of cell types. We develop analytical results and numerical tools to perform this reduction for a specific model characterizing the evolution of a cell by a system of piecewise deterministic Markov processes (PDMP). Solving a spectral problem, we find the explicit variational form of the rate function associated to a large deviations principle, for any number of genes. The resulting Lagrangian dynamics allows us to define a deterministic limit of which the basins of attraction can be identified to cellular types. In this context the quasipotential, describing the transitions between these basins in the weak noise limit, can be defined as the unique solution of an Hamilton-Jacobi equation under a particular constraint. We develop a numerical method for approximating the coarse-grained model parameters, and show its accuracy for a symmetric toggle-switch network. We deduce from the reduced model an approximation of the stationary distribution of the PDMP system, which appears as a Beta mixture. Altogether those results establish a rigorous frame for connecting GRN behavior to the resulting cellular behavior, including the calculation of the probability of jumps between cell types.


Assuntos
Fenômenos Bioquímicos , Expressão Gênica , Redes Reguladoras de Genes , Cadeias de Markov , Processos Estocásticos
13.
PLoS Biol ; 15(7): e2001867, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28749943

RESUMO

Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned).


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Transcrição Gênica , Antígeno AC133/genética , Antígeno AC133/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Forma Celular , Rastreamento de Células , Células Cultivadas , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Células-Tronco Multipotentes/citologia , Análise de Componente Principal , Análise de Célula Única , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Imagem com Lapso de Tempo
14.
BMC Bioinformatics ; 20(1): 220, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046682

RESUMO

BACKGROUND: Inference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitations. RESULTS: In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal dynamical network from time-stamped single-cell data, which tackles some of the limitations associated with current approaches. We first introduce the concept of waves, which posits that the information provided by an external stimulus will affect genes one-by-one through a cascade, like waves spreading through a network. This concept allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation. We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in silico using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper description of gene expression at the single-cell level. We finally apply WASABI on in vitro generated data on an avian model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a new light on the molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct control of the differentiation-inducing stimulus. CONCLUSIONS: Together, these results demonstrate WASABI versatility and ability to tackle some general gene regulatory networks inference issues. It is our hope that WASABI will prove useful in helping biologists to fully exploit the power of time-stamped single-cell data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Diferenciação Celular/genética , Simulação por Computador , Células Eritroides/metabolismo , Cadeias de Markov , Análise de Célula Única , Biologia de Sistemas/métodos
15.
Bioinformatics ; 34(2): 258-266, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968704

RESUMO

MOTIVATION: Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. RESULTS: We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES has a low computational complexity and is amenable to problems of extremely large dimensionality. Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes pointed to BATF as a candidate novel regulator of erythroid development. AVAILABILITY AND IMPLEMENTATION: MATLAB and R version of SINCERITIES are freely available from the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and https://github.com/CABSEL/SINCERITIES. The single cell THP-1 and T2EC transcriptional profiles are available from the original publications (Kouno et al., 2013; Richard et al., 2016). The in silico single cell data are available on SINCERITIES websites. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

16.
In Silico Biol ; 13(1-2): 55-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31006682

RESUMO

The in vivo erythropoiesis, which is the generation of mature red blood cells in the bone marrow of whole organisms, has been described by a variety of mathematical models in the past decades. However, the in vitro erythropoiesis, which produces red blood cells in cultures, has received much less attention from the modelling community. In this paper, we propose the first mathematical model of in vitro erythropoiesis. We start by formulating different models and select the best one at fitting experimental data of in vitro erythropoietic differentiation obtained from chicken erythroid progenitor cells. It is based on a set of linear ODE, describing 3 hypothetical populations of cells at different stages of differentiation. We then compute confidence intervals for all of its parameters estimates, and conclude that our model is fully identifiable. Finally, we use this model to compute the effect of a chemical drug called Rapamycin, which affects all states of differentiation in the culture, and relate these effects to specific parameter variations. We provide the first model for the kinetics of in vitro cellular differentiation which is proven to be identifiable. It will serve as a basis for a model which will better account for the variability which is inherent to the experimental protocol used for the model calibration.


Assuntos
Eritropoese , Modelos Teóricos , Algoritmos , Animais , Diferenciação Celular/genética , Embrião de Galinha , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Humanos , Cinética , Modelos Biológicos , Reprodutibilidade dos Testes
17.
PLoS Biol ; 14(12): e1002585, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027290

RESUMO

In some recent studies, a view emerged that stochastic dynamics governing the switching of cells from one differentiation state to another could be characterized by a peak in gene expression variability at the point of fate commitment. We have tested this hypothesis at the single-cell level by analyzing primary chicken erythroid progenitors through their differentiation process and measuring the expression of selected genes at six sequential time-points after induction of differentiation. In contrast to population-based expression data, single-cell gene expression data revealed a high cell-to-cell variability, which was masked by averaging. We were able to show that the correlation network was a very dynamical entity and that a subgroup of genes tend to follow the predictions from the dynamical network biomarker (DNB) theory. In addition, we also identified a small group of functionally related genes encoding proteins involved in sterol synthesis that could act as the initial drivers of the differentiation. In order to assess quantitatively the cell-to-cell variability in gene expression and its evolution in time, we used Shannon entropy as a measure of the heterogeneity. Entropy values showed a significant increase in the first 8 h of the differentiation process, reaching a peak between 8 and 24 h, before decreasing to significantly lower values. Moreover, we observed that the previous point of maximum entropy precedes two paramount key points: an irreversible commitment to differentiation between 24 and 48 h followed by a significant increase in cell size variability at 48 h. In conclusion, when analyzed at the single cell level, the differentiation process looks very different from its classical population average view. New observables (like entropy) can be computed, the behavior of which is fully compatible with the idea that differentiation is not a "simple" program that all cells execute identically but results from the dynamical behavior of the underlying molecular network.


Assuntos
Diferenciação Celular , Análise de Célula Única , Entropia , Perfilação da Expressão Gênica , Modelos Biológicos , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
BMC Mol Biol ; 16: 20, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608344

RESUMO

BACKGROUND: Gene expression is an inherently stochastic process, owing to its dynamic molecular nature. Protein amount distributions, which can be acquired by cytometry using a reporter gene, can inform about the mechanisms of the underlying microscopic molecular system. RESULTS: By using different clones of chicken erythroid progenitor cells harboring different integration sites of a CMV-driven mCherry protein, we investigated the dynamical behavior of such distributions. We show that, on short term, clone distributions can be quickly regenerated from small population samples with a high accuracy. On longer term, on the contrary, we show variations manifested by correlated fluctuation in the Mean Fluorescence Intensity. In search for a possible cause of this correlation, we demonstrate that in response to small temperature variations cells are able to adjust their gene expression rate: a modest (2 °C) increase in external temperature induces a significant down regulation of mean expression values, with a reverse effect observed when the temperature is decreased. Using a two-state model of gene expression we further demonstrate that temperature acts by modifying the size of transcription bursts, while the burst frequency of the investigated promoter is less systematically affected. CONCLUSIONS: For the first time, we report that transcription burst size is a key parameter for gene expression that metazoan cells from homeotherm animals can modify in response to an external thermal stimulus.


Assuntos
Eritroblastos/metabolismo , Células Precursoras Eritroides/metabolismo , Regulação da Expressão Gênica/fisiologia , Expressão Gênica/genética , Temperatura , Alpharetrovirus/genética , Animais , Linhagem Celular Transformada , Galinhas , Citometria de Fluxo , Fluorescência , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Processos Estocásticos , Transcrição Gênica/genética
19.
BMC Biol ; 11: 15, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23442824

RESUMO

BACKGROUND: A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. RESULTS: For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. CONCLUSIONS: In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Loci Gênicos/genética , Transcrição Gênica , Algoritmos , Animais , Linhagem Celular , Galinhas , Simulação por Computador , Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Genoma/genética , Ácidos Hidroxâmicos/farmacologia , Proteínas Luminescentes/metabolismo , Modelos Genéticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Processos Estocásticos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Proteína Vermelha Fluorescente
20.
PLoS One ; 19(3): e0301022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547073

RESUMO

Germinal centers (GCs) are the key histological structures of the adaptive immune system, responsible for the development and selection of B cells producing high-affinity antibodies against antigens. Due to their level of complexity, unexpected malfunctioning may lead to a range of pathologies, including various malignant formations. One promising way to improve the understanding of malignant transformation is to study the underlying gene regulatory networks (GRNs) associated with cell development and differentiation. Evaluation and inference of the GRN structure from gene expression data is a challenging task in systems biology: recent achievements in single-cell (SC) transcriptomics allow the generation of SC gene expression data, which can be used to sharpen the knowledge on GRN structure. In order to understand whether a particular network of three key gene regulators (BCL6, IRF4, BLIMP1), influenced by two external stimuli signals (surface receptors BCR and CD40), is able to describe GC B cell differentiation, we used a stochastic model to fit SC transcriptomic data from a human lymphoid organ dataset. The model is defined mathematically as a piecewise-deterministic Markov process. We showed that after parameter tuning, the model qualitatively recapitulates mRNA distributions corresponding to GC and plasmablast stages of B cell differentiation. Thus, the model can assist in validating the GRN structure and, in the future, could lead to better understanding of the different types of dysfunction of the regulatory mechanisms.


Assuntos
Redes Reguladoras de Genes , Centro Germinativo , Humanos , Linfócitos B , Perfilação da Expressão Gênica , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA