Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pestic Biochem Physiol ; 200: 105813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582585

RESUMO

Apple Valsa canker (AVC), caused by Valsa mali, is the most serious branch disease for apples in East Asia. Biocontrol constitutes a desirable alternative strategy to alleviate the problems of orchard environment pollution and pathogen resistance risk. It is particularly important to explore efficient biocontrol microorganism resources to develop new biocontrol technologies and products. In this study, an endophytic fungus, which results in the specific inhibition of the growth of V. mali, was isolated from the twig tissue of Malus micromalus with a good tolerance to AVC. The fungus was identified as Alternaria alternata, based on morphological observations and phylogenetic analysis, and was named Aa-Lcht. Aa-Lcht showed a strong preventive effect against AVC, as determined with an in vitro twig evaluation method. When V. mali was inhibited by Aa-Lcht, according to morphological and cytological observations, the hyphae was deformed and it had more branches, a degradation in protoplasm, breakages in cell walls, and then finally died completely due to mycelium cells. Transcriptome analysis indicated that Aa-Lcht could suppress the growth of V. mali by inhibiting the activity of various hydrolases, destroying carbohydrate metabolic processes, and damaging the pathogen membrane system. It was further demonstrated that Aa-Lcht could colonize apple twig tissues without damaging the tissue's integrity. More importantly, Aa-Lcht could also stimulate the up-regulated expression of defense-related genes in apples together with the accumulation of reactive oxygen species and callose deposition in apple leaf cells. Summarizing the above, one endophytic biocontrol resource was isolated, and it can colonize apple twig tissue and play a biocontrol role through both pathogen inhibition and resistance inducement.


Assuntos
Alternaria , Malus , Malus/microbiologia , Filogenia , Perfilação da Expressão Gênica , Hifas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Plant Biotechnol J ; 21(5): 943-960, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36632734

RESUMO

Salt and drought impair plant osmotic homeostasis and greatly limit plant growth and development. Plants decrease stomatal aperture to reduce water loss and maintain osmotic homeostasis, leading to improved stress tolerance. Herein, we identified the C2 H2 transcription factor gene OSMOTIC STRESS INDUCED C2 H2 1 (OSIC1) from Populus alba var. pyramidalis to be induced by salt, drought, polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA). Overexpression of OSIC1 conferred transgenic poplar more tolerance to high salinity, drought and PEG6000 treatment by reducing stomatal aperture, while its mutant generated by the CRISPR/Cas9 system showed the opposite phenotype. Furthermore, OSIC1 directly up-regulates PalCuAOζ in vitro and in vivo, encoding a copper-containing polyamine oxidase, to enhance H2 O2 accumulation in guard cells and thus modulates stomatal closure when stresses occur. Additionally, ABA-, drought- and salt-induced PalMPK3 phosphorylates OSIC1 to increase its transcriptional activity to PalCuAOζ. This regulation of OSIC1 at the transcriptional and protein levels guarantees rapid stomatal closure when poplar responds to osmotic stress. Our results revealed a novel transcriptional regulatory mechanism of H2 O2 production in guard cells mediated by the OSIC1-PalCuAOζ module. These findings deepen our understanding of how perennial woody plants, like poplar, respond to osmotic stress caused by salt and drought and provide potential targets for breeding.


Assuntos
Populus , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Populus/metabolismo , Pressão Osmótica , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Estômatos de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Arch Microbiol ; 204(3): 195, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217920

RESUMO

The spread of biodegradable plastic films (BDFs) not only increases grain yield but also reduces environmental pollution from plastic film to a large extent. Soil microbes are considered to be involved in biodegradation processes. However, the study of microbe diversity in soil mulched with biodegradable plastic film remains limited. Here, we compared the diversity of microbes between soils with biodegradable film and nonbiodegradable film (NBDF) mulch. The results showed that BDFs affected total C, P and NH4+-N, especially organism C content, as well as microbe species richness (ACE; Chao1) and diversity (Simpson index; Shannon index). In terms of dominant phyla and genera, BDFs and NBDF can influence the abundance of disparate species. Furthermore, BDFs could also contribute to improving the richness of the important functional bacterial groups in soil, e.g., Pedomicrobium and Comamonas, both of which are involved in the degradation of plastic residues in soil. Finally, we found that BDFs improved the transformation of nitrogen by significantly increasing the abundances of Nitrobacter and Nitrospira. Our results highlight the impact of BDF mulch on the abundance of functional bacteria in the soil.


Assuntos
Agricultura , Solo , Bactérias/genética , China , Plásticos , Solo/química , Microbiologia do Solo
4.
BMC Plant Biol ; 21(1): 304, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193039

RESUMO

BACKGROUND: The production of cereal crops is frequently affected by diseases caused by Fusarium graminearum and Magnaporthe oryzae, two devastating fungal pathogens. To improve crop resistance, many studies have focused on understanding the mechanisms of host defense against these two fungi individually. However, our knowledge of the common and different host defenses against these pathogens is very limited. RESULTS: In this study, we employed Brachypodium distachyon as a model for cereal crops and performed comparative transcriptomics to study the dynamics of host gene expression at different infection stages. We found that infection with either F. graminearum or M. oryzae triggered massive transcriptomic reprogramming in the diseased tissues. Numerous defense-related genes were induced with dynamic changes during the time course of infection, including genes that function in pattern detection, MAPK cascade, phytohormone signaling, transcription, protein degradation, and secondary metabolism. In particular, the expression of jasmonic acid signaling genes and proteasome component genes were likely specifically inhibited or manipulated upon infection by F. graminearum. CONCLUSIONS: Our analysis showed that, although the affected host pathways are similar, their expression programs and regulations are distinct during infection by F. graminearum and M. oryzae. The results provide valuable insight into the interactions between B. distachyon and two important cereal pathogens.


Assuntos
Ascomicetos/fisiologia , Brachypodium/genética , Brachypodium/microbiologia , Fusarium/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Mapas de Interação de Proteínas/genética
5.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149287

RESUMO

The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. S1PR1 is highly expressed by resting MG and is rapidly downregulated following acute retinal damage. Drug treatments that activate S1PR1 or increase levels of S1P suppressed the formation of MGPCs, whereas treatments that inhibit S1PR1 or decreased levels of S1P stimulated the formation of MGPCs. Inhibition of S1PR1 or SPHK1 significantly enhanced the neuronal differentiation of the progeny of MGPCs. Further, ablation of microglia from the retina, wherein the formation of MGPCs in damaged retinas is impaired, has a significant impact upon expression patterns of S1P-related genes in MG. Inhibition of S1PR1 and SPHK1 partially rescued the formation of MGPCs in damaged retinas missing microglia. Finally, we show that TGFß/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

6.
Hortic Res ; 11(5): uhae094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799130

RESUMO

In plant-pathogen interactions, pathogens display tissue specificity, infecting and causing disease in particular tissues. However, the involvement of microRNAs/microRNA-like RNAs (miRNAs/milRNAs) in tissue-specific regulation during plant-pathogen interactions remains largely unexplored. This study investigates the differential expression of miRNAs/milRNAs, as well as their corresponding target genes, in interactions between Valsa mali (Vm) and different apple tissues. The results demonstrated that both apple miRNAs and Vm milRNAs exhibited distinct expression profiles when Vm infected bark and leaves, with functionally diverse corresponding target genes. Furthermore, one apple miRNA (Mdo-miR482a) and one Vm milRNA (Vm-milR57) were identified as exhibiting tissue-specific expression in interactions between Vm and apple bark or leaves. Mdo-miR482a was exclusively up-regulated in response to Vm infection in bark and target a nucleotide-binding leucine-rich repeat (NLR) gene of apple. When Mdo-miR482a was transiently over-expressed or silenced, the resistance was significantly reduced or improved. Similarly, transient expression of the NLR gene also showed an increase in resistance. Vm-milR57 could target two essential pathogenicity-related genes of Vm. During Vm infection in bark, the expression of Vm-milR57 was down-regulated to enhance the expression of the corresponding target gene to improve the pathogenicity. The study is the first to reveal tissue-specific characteristics of apple miRNAs and Vm milRNAs in interactions between Vm and different apple tissues, providing new insights into adaptive regulation in tissue-specific interactions between plants and fungi.

7.
Hortic Res ; 11(8): uhae168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108575

RESUMO

Olive is a valuable oil-bearing tree with fruits containing high levels of fatty acids. Oil production is a multifaceted process involving intricate interactions between fatty acid biosynthesis and other metabolic pathways that are affected by genetics and the developmental stages of the fruit. However, a comprehensive understanding of the underlying regulatory mechanisms is still lacking. Here, we generated a gap-free telomere-to-telomere assembly for Olea europaea cv. 'Leccino', representing an olive genome with the highest contiguity and completeness to date. The combination of time-course metabolomics and transcriptomics datasets revealed a negative correlation between fatty acid and flavonoid biosynthesis in the initial phase of olive fruit development, which was subject to an opposing regulatory mechanism mediated by the hub transcription factor MYC2. Multifaceted molecular assays demonstrated that MYC2 is a repressor of fatty acid biosynthesis by downregulating the expression of BCCP2 (biotin carboxylase carrier protein 2), while it acts as an activator of FLS (flavonol synthase), leading to an increase in flavonoid synthesis. Furthermore, the expression of MYC2 is regulated by fluctuations of methyl jasmonate content during olive fruit development. Our study completes a high-quality gapless genome of an olive cultivar, and provides new insight into the regulatory mechanisms underlying the biosynthesis of fatty acids and flavonoids in its fruit.

8.
Food Chem ; 415: 135674, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36868066

RESUMO

The bitterness perception of coffee is a key attribute that impacts consumer acceptance. Nontargeted liquid chromatography/mass spectrometry (LC/MS) flavoromics analysis was applied to identify compounds that enhance the bitter perception of roasted coffee brew. Orthogonal partial least squares (OPLS) analysis was used to model the comprehensive chemical profiles and sensory bitter intensity ratings of fourteen coffee brews with good fit and predictivity. Five compounds that were highly predictive and positively correlated to bitter intensity were selected from the OPLS model, further isolated, and purified using preparative LC fractionation. Sensory recombination testing demonstrated that five compounds significantly enhanced the bitter perception of coffee when presented as a mixture, but not when presented individually. In addition, a set of roasting experiments revealed the five compounds were generated during the coffee roasting process.


Assuntos
Café , Paladar , Paladar/fisiologia , Café/química , Análise dos Mínimos Quadrados , Cromatografia Líquida
9.
Artigo em Inglês | MEDLINE | ID: mdl-37264680

RESUMO

OBJECTIVES: The correlations between economic modeling input parameters directly impact the variance and may impact the expected values of model outputs. However, correlation coefficients are not often reported in the literature. We aim to understand the correlations between model inputs for probabilistic analysis from summary statistics. METHODS: We provide proof that for correlated random variables X and Y (e.g. inpatient visits and outpatient visits), the Pearson correlation coefficients of sample means and samples are equal to each other (corrX,Y=corrX-,Y-). Therefore, when studies report summary statistics of correlated parameters, we can quantify the correlation coefficient between parameters. RESULTS: We use examples to illustrate how to estimate the correlation coefficient between the incidence rates of non-severe and severe hypoglycemia events, and the common coefficient of five cost components for patients with diabetic foot ulcers. We further introduce three types of correlations for utilities and provide two examples to estimate the correlations for utilities based on published data. We also evaluate how correlations between cost parameters and utility parameters impact the cost-effectiveness results using a Markov model for major depression. CONCLUSION: Incorporation of the correlations can improve the precision of cost-effectiveness results and increase confidence in evidence-based decision-making. Further empirical evidence is warranted.


Assuntos
Análise Custo-Benefício , Humanos
10.
Chin Med J (Engl) ; 136(24): 2931-2937, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38032036

RESUMO

BACKGROUND: This study aimed to determine the reasons for conversion and elucidate the safety and efficacy of transition to tenofovir alafenamide/emtricitabine/bictegravir sodium (TAF/FTC/BIC) in highly active antiretroviral therapy (HAART)-experienced HIV-infected patients in real-world settings. METHODS: We conducted a retrospective cohort study. The treatment conversion rationales, safety, and effectiveness in 1684 HIV-infected patients with previous HAART experience who switched to TAF/FTC/BIC were evaluated at Beijing Ditan Hospital from September 2021 to Auguest 2022. RESULTS: Regimen simplification (990/1684, 58.79%) was the most common reason for switching, followed by osteoporosis or osteopenia (375/1684, 22.27%), liver dysfunction (231/1684, 13.72%), decline in tenofovir alafenamide/emtricitabine/elvitegravir/cobicistat (TAF/FTC/EVG/c) with food restriction (215/1684, 12.77%), virological failure (116/1684, 6.89%), and renal dysfunction (90/1684, 5.34%). In patients receiving non-nucleotide reverse transcriptase inhibitors (NNRTI)-containing regimens, lipid panel changes 1 year after switching indicated a difference of 3.27 ± 1.10 mmol/L vs . 3.40 ± 1.59 mmol/L in triglyceride ( P  = 0.014), 4.82 ± 0.74 mmol/L vs . 4.88 ± 0.72 mmol/L in total cholesterol ( P  = 0.038), 3.09 ± 0.70 mmol/L vs . 3.18 ± 0.66 mmol/L in low-density lipoprotein ( P  <0.001), and 0.99 ± 0.11 mmol/L vs . 0.95 ± 0.10 mmol/L in high-density lipoprotein ( P  <0.001). Conversely, among patients receiving booster-containing regimens, including TAF/FTC/EVG/c and lopinavir/ritonavir (LPV/r), lipid panel changes presented decreased trends. We also observed an improved trend in viral load suppression, and alanine transaminase (ALT), aspartate transaminase (AST), estimated glomerular filtration rate (eGFR), and serum creatinine levels after the transition ( P  <0.001). CONCLUSION: The transition to TAF/FTC/BIC demonstrated good treatment potency. Furthermore, this study elucidates the motivations behind the adoption of TAF/FTC/BIC in real-world scenarios, providing clinical evidence supporting the stable conversion to TAF/FTC/BIC for HAART-experienced patients.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Fármacos Anti-HIV/efeitos adversos , Infecções por HIV/tratamento farmacológico , Tenofovir/uso terapêutico , Estudos Retrospectivos , Emtricitabina/uso terapêutico , Emtricitabina/farmacologia , Adenina/uso terapêutico , Lipídeos
11.
Front Public Health ; 11: 1282324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249414

RESUMO

Objective: The study aimed to use supervised machine learning models to predict the length and risk of prolonged hospitalization in PLWHs to help physicians timely clinical intervention and avoid waste of health resources. Methods: Regression models were established based on RF, KNN, SVM, and XGB to predict the length of hospital stay using RMSE, MAE, MAPE, and R2, while classification models were established based on RF, KNN, SVM, NN, and XGB to predict risk of prolonged hospital stay using accuracy, PPV, NPV, specificity, sensitivity, and kappa, and visualization evaluation based on AUROC, AUPRC, calibration curves and decision curves of all models were used for internally validation. Results: In regression models, XGB model performed best in the internal validation (RMSE = 16.81, MAE = 10.39, MAPE = 0.98, R2 = 0.47) to predict the length of hospital stay, while in classification models, NN model presented good fitting and stable features and performed best in testing sets, with excellent accuracy (0.7623), PPV (0.7853), NPV (0.7092), sensitivity (0.8754), specificity (0.5882), and kappa (0.4672), and further visualization evaluation indicated that the largest AUROC (0.9779), AUPRC (0.773) and well-performed calibration curve and decision curve in the internal validation. Conclusion: This study showed that XGB model was effective in predicting the length of hospital stay, while NN model was effective in predicting the risk of prolonged hospitalization in PLWH. Based on predictive models, an intelligent medical prediction system may be developed to effectively predict the length of stay and risk of HIV patients according to their medical records, which helped reduce the waste of healthcare resources.


Assuntos
Infecções por HIV , Humanos , Tempo de Internação , Estudos Retrospectivos , Infecções por HIV/epidemiologia , Algoritmos , Aprendizado de Máquina Supervisionado
12.
Food Chem ; 350: 129225, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592365

RESUMO

Untargeted LC-MS flavoromic profiling was utilized to identify compounds that suppress bitterness perception of coffee brew. The chemical profiles of fourteen brew samples and corresponding perceived bitterness intensities determined by descriptive sensory analysis were modeled by orthogonal partial least squares (OPLS) with good fit (R2Y > 0.9) and predictive ability (Q2 > 0.9). Ten chemical markers that were highly predictive and negatively correlated to bitter intensity were subsequently purified by multi-dimensional preparative LC-MS to conduct sensory recombination testing and/or confirm compound identifications by NMR. Three of the ten compounds evaluated, namely 4-caffeoylquinic acid, 5-caffeoylquinic acid, and 2-O-ß-d-glucopyranosyl-atractyligenin were identified as bitter modulators in coffee, and significantly decreased the perceived bitterness intensity of the brew.


Assuntos
Café/química , Análise de Alimentos , Paladar , Humanos , Análise dos Mínimos Quadrados
13.
Front Microbiol ; 10: 1073, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178834

RESUMO

Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley. Previous studies have showed that all three MAP kinase genes, MGV1, FgHOG1, and GPMK1, are involved in regulating hyphal growth, sexual reproduction, plant infection, and stress responses in this pathogen. To determine the relationship between the Mgv1 and FgHog1 pathways, in this study, we generated and characterized the mgv1 Fghog1 double mutant. Deletion of FgHOG1 partially rescued the defects of the mgv1 mutant in vegetative growth and cell wall integrity but had no effects on its defects in plant infection and DON production. The mgv1 Fghog1 mutant grew faster and was more tolerant to cell wall stressors than the mgv1 mutant. Swollen compartments and cell burst were observed frequently in the mgv1 mutant but rarely in the mgv1 Fghog1 mutant when treated with fungicide fludioxonil or cell wall stressor Congo red. Conversely, the deletion of MGV1 also alleviated the hyperosmotic sensitivity of the Fghog1 mutant in vegetative growth. TGY assays indicated increased phosphorylation of FgHog1 in the mgv1 mutant, and TEY assays further revealed elevated activation of Gpmk1 in the mgv1 Fghog1 double mutant, particularly under cell wall stress conditions. Overall, our data showed that deletion of FgHOG1 partially suppressed the defects of the mgv1 mutant, possibly by affecting genes related to cell wall integrity and osmoregulation via the over-activation of Gpmk1 MAP kinase and avoiding intracellular turgor elevation.

14.
Front Plant Sci ; 10: 1083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572409

RESUMO

Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the GATs family in Populus species and characterized their functional evolution and divergence in a desert poplar species (Populus euphratica). We found that the GATs underwent genus-specific expansion via multiple whole-genome duplications in Populus species. The purifying selection were identified across those GATs evolution and divergence in poplar diversity, except two paralogous PeuGAT2 and PeuGAT3 from P. euphratica. The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both PeuGAT genes were functionally characterized in Arabidopsis and poplar, respectively. The overexpression of PeuGAT3 increased the thickness of xylem cells walls in both Arabidopsis and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that PeuGAT3 could be an attractive candidate gene for engineering trees with improved brown-rot resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA