Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Protoc ; 1(8): e204, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34370407

RESUMO

ImageJ provides a framework for image processing across scientific domains while being fully open source. Over the years ImageJ has been substantially extended to support novel applications in scientific imaging as they emerge, particularly in the area of biological microscopy, with functionality made more accessible via the Fiji distribution of ImageJ. Within this software ecosystem, work has been done to extend the accessibility of ImageJ to utilize scripting, macros, and plugins in a variety of programming scenarios, e.g., from Groovy and Python and in Jupyter notebooks and cloud computing. We provide five protocols that demonstrate the extensibility of ImageJ for various workflows in image processing. We focus first on Fluorescence Lifetime Imaging Microscopy (FLIM) data, since this requires significant processing to provide quantitative insights into the microenvironments of cells. Second, we show how ImageJ can now be utilized for common image processing techniques, specifically image deconvolution and inversion, while highlighting the new, built-in features of ImageJ-particularly its capacity to run completely headless and the Ops matching feature that selects the optimal algorithm for a given function and data input, thereby enabling processing speedup. Collectively, these protocols can be used as a basis for automating biological image processing workflows. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Using PyImageJ for FLIM data processing Alternate Protocol: Groovy FLIMJ in Jupyter Notebooks Basic Protocol 2: Using ImageJ Ops for image deconvolution Support Protocol 1: Using ImageJ Ops matching feature for image inversion Support Protocol 2: Headless ImageJ deconvolution.


Assuntos
Ecossistema , Processamento de Imagem Assistida por Computador , Algoritmos , Humanos , Microscopia de Fluorescência , Software
2.
PLoS One ; 15(12): e0238327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378370

RESUMO

In the field of fluorescence microscopy, there is continued demand for dynamic technologies that can exploit the complete information from every pixel of an image. One imaging technique with proven ability for yielding additional information from fluorescence imaging is Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of how long a fluorophore stays in an excited energy state, and this measurement is affected by changes in its chemical microenvironment, such as proximity to other fluorophores, pH, and hydrophobic regions. This ability to provide information about the microenvironment has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measurement to measuring distances between proteins. The increased use of FLIM has necessitated the development of computational tools for integrating FLIM analysis with image and data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit that allows for easy use and development of extensible image analysis workflows with FLIM data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ offers FLIM fitting routines with seamless integration with many other ImageJ components, and the ability to be extended to create complex FLIM analysis workflows. Building on ImageJ Ops also enables FLIMJ's routines to be used with Jupyter notebooks and integrate naturally with science-friendly programming in, e.g., Python and Groovy. We show the extensibility of FLIMJ in two analysis scenarios: lifetime-based image segmentation and image colocalization. We also validate the fitting routines by comparing them against industry FLIM analysis standards.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA