RESUMO
BACKGROUND: Active smoking and exposure to environmental tobacco smoke may be related to cognitive function decline. We assessed the associations of urinary levels of nicotine and its metabolites with cognitive function. METHODS: A total of 553 elder adults at high risk of cognitive impairment and 2212 gender- and age-matched individuals at low risk of cognitive impairment were selected at a ratio of 1: 4 from the remained individuals (n = 6771) who completed the baseline survey of the Shenzhen Ageing-Related Disorder Cohort, after excluding those with either Alzheimer's disease, Parkinson's syndrome or stroke as well as those with missing data on variables (including active and passive smoking status, Mini-Cog score). Urinary levels of nicotine and its metabolites and cognitive function for all individuals were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and assessed using the Mini-Cog test, respectively. Associations of urinary levels of nicotine and its metabolites with cognitive function were analyzed by conditional logistic regression models. RESULTS: Individuals in the highest tertile of urinary OHCotGluc (OR: 1.52, 95%CI: 1.19-1.93) or NNO (OR: 1.50, 95%CI: 1.16-1.93) levels as well as in the second tertile of urinary ∑Nic level (OR: 1.43, 95%CI: 1.13-1.82) were at higher risk of cognitive impairment compared with those in the corresponding lowest tertile. Restricted cubic spline models revealed the non-linear dose-response relationships between urinary levels of OHCotGluc, NNO or ∑Nic and the risk of cognitive impairment. CONCLUSIONS: Urinary levels of OHCotGluc, NNO or ∑Nic exhibited a non-linear dose-response relationship with cognitive function in the urban elderly.
RESUMO
Active and passive exposure to tobacco smoke may increase risk of cognitive decline. However, effects of enhanced the aging process on the association of urinary nicotine metabolites with cognitive impairment remain unclear. In this study, 6657 Chinese older adults completed the physical examinations and cognitive tests. We measured urinary nicotine metabolite levels, mitochondrial DNA copy number (mtDNA-CN), and relative telomere length (RTL) and analyzed effects of urinary nicotine metabolites and their interaction with mtDNA-CN or RTL on cognitive impairment by generalized linear models and qg-computation, respectively. Each 1-unit increase in urinary 3-OHCot, 3-OHCotGluc, CotGluc, or NicGluc levels corresponded to a 1.05-, 1.09-, 1.04-, and 0.90-fold increased risk of cognitive impairment. Each 1-quantile increment in the mixture level of 8 nicotine metabolites corresponded to an increment of 1.40- and 1.34-fold risk of cognitive impairment in individuals with longer RTL or low mtDNA-CN. Urinary 3-OHCotGluc and RTL or mtDNA-CN exhibited an additive effect on cognitive impairment in addition to the mixture of 8 nicotine metabolites and mtDNA-CN. The findings suggested that aging process may increase the risk of tobacco-related cognitive impairment.