Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 48(9): 2587-98, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26301426

RESUMO

Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4 exhibited extraordinary enantioselectivities when combined with iron(0) cluster Fe3(CO)12. A broad scope of ketones including aromatic, heteroaromatic, and ß-ketoesters can be reduced smoothly with excellent enantioselectivities (up to 99% ee) approaching or exceeding those achievable with the noble metal catalysts. Notably, the chiral iron-based catalyst proved to be highly efficient for both ATH as well as AH of various ketones. Until now, such "universal" catalyst is very rare. Preliminary studies suggest that the AH reaction most likely involved iron particles as the active catalytic species. These research results point to a new direction in developing viable effective nonprecious metal catalysts for asymmetric reduction and probably for other asymmetric catalytic reactions as well.

2.
Org Lett ; 8(24): 5565-7, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107073

RESUMO

Chiral diaminodiphosphine-Ir(I) complexes were found to efficiently catalyze enantioselective oxidation of racemic secondary alcohols in acetone. In the presence of base, oxidative kinetic resolution of the alcohols proceeded smoothly with excellent enantioselectivity (up to 98% ee) under mild conditions. [reaction: see text].


Assuntos
Álcoois/química , Irídio/química , Compostos Organometálicos/síntese química , Acetona/química , Catálise , Cetonas/química , Cinética , Oxirredução , Estereoisomerismo
3.
Org Lett ; 7(6): 1043-5, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-15760134

RESUMO

[reaction: see text] Catalytic systems generated in situ from the chiral PNNP ligands with iridium or rhodium hydride complexes exhibited excellent catalytic activity and good enantioselectivity in the asymmetric transfer hydrogenation of aromatic ketones without added base. The best result was obtained in the IrH(CO)(PPh(3))(3)-ligand 2 catalytic system with up to 99% yield and 97% ee.

4.
Chem Commun (Camb) ; (1): 142-3, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12611006

RESUMO

The chiral Ru cluster-based catalyst systems generated in situ from Ru3(CO)12 and chiral diiminodiphosphine tetradentate ligands effected asymmetric transfer hydrogenation of propiophenone in 2-propanol, leading to 1-phenyl-1-propanol in 94% yield and with 96% ee.

5.
Langmuir ; 23(12): 6819-26, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17497810

RESUMO

The self-assembly of a Wilkinson type of catalyst molecule, trans-RhCl(CO)(PPh3)2, on Au(111) surfaces and its electrocatalytic properties toward the hydrogen evolution reaction (HER) are investigated by employing scanning tunneling microscopy (STM), cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS). The self-assembled monolayers of RhCl(CO)(PPh3)2 are prepared from either dichloromethane or aqueous solutions, but the ordered structures are observed only in atmospheric conditions after solvents evaporate. In the electrolyte solutions, disordered yet uniformly sized spherical clusters of individual molecules are observed as a result of the conformational change of the molecule by the solvation effect of water. The immobilized Rh(I) molecular clusters are electrochemically stable in a wide potential window and exhibit remarkable electrocatalytic activity toward HER in perchloric acid solutions. Several comparative experiments involving similar types of immobilized complexes containing Ru(I) and Ir(I) centers and solution species of RhCl(CO)(PPh3)2 are performed. However, none of them are found to be electroactive to HER. The Tafel slope of HER on the Rh(I) complex modified Au(111) electrode in 0.1 M HClO4 is determined to be -0.061 V, which is almost in the middle of those on bare Au(111) (-0.093 V) and Rh covered (thetaRh approximately 0.3) Au(111) (-0.034 V) electrodes. XPS measurements reveal a valence change of Rh(I) to Rh(0), and an oxidative addition and reductive elimination mechanism is suggested for the enhancement of HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA