RESUMO
BACKGROUND AND AIMS: The positive association between mean systolic blood pressure (SBP) and body mass index (BMI) diminished or reversed over the past four decades. The primary aim of this study was to evaluate effects of BMI change on longitudinal SBP. METHODS AND RESULTS: A total of 3638 participants who had annual health examination from 2015 to 2019 were included and matched by age and sex according to BMI levels. BMI and SBP were measured annually and their association were assessed by a linear mixed-effects regression model. The normal weight participants had a sustained weight gain as well as SBP increase during the study period (all Ptrend <0.001). The obese participants had a sustained weight loss but SBP did not decrease simultaneously. If BMI change was considered, the obese participants with BMI loss had a significant decrease of SBP during the study period (Ptrend = 0.0012). Mixed-effects models showed that weight gain was more influential on longitudinal SBP in the normal weight participants and weight loss was in the obese participants. The obese group with BMI loss had a decrease of SBP by 5.01 mmHg (95% confidence interval: 2.56 mmHg, 7.46 mmHg) compared to their counterparts with BMI maintenance from 2015 to 2019. CONCLUSIONS: The effect of weight change on longitudinal SBP was varied among BMI groups. With the increase of baseline BMI level, the positive effect of weight loss on SBP became greater and the negative effect of weight gain on SBP were attenuated.
Assuntos
Obesidade , Aumento de Peso , Pressão Sanguínea , Índice de Massa Corporal , Humanos , Obesidade/diagnóstico , Obesidade/epidemiologia , Redução de PesoRESUMO
The FcγRs are immune cell surface proteins that bind IgG and facilitate cytokine production, phagocytosis, and Ab-dependent, cell-mediated cytotoxicity. FcγRs play a critical role in immunity; variation in these genes is implicated in autoimmunity and other diseases. Cynomolgus macaques are an excellent animal model for many human diseases, and Mauritian cynomolgus macaques (MCMs) are particularly useful because of their restricted genetic diversity. Previous studies of MCM immune gene diversity have focused on the MHC and killer cell Ig-like receptor. In this study, we characterize FcγR diversity in 48 MCMs using PacBio long-read sequencing to identify novel alleles of each of the four expressed MCM FcγR genes. We also developed a high-throughput FcγR genotyping assay, which we used to determine allele frequencies and identify FcγR haplotypes in more than 500 additional MCMs. We found three alleles for FcγR1A, seven each for FcγR2A and FcγR2B, and four for FcγR3A; these segregate into eight haplotypes. We also assessed whether different FcγR alleles confer different Ab-binding affinities by surface plasmon resonance and found minimal difference in binding affinities across alleles for a panel of wild type and Fc-engineered human IgG. This work suggests that although MCMs may not fully represent the diversity of FcγR responses in humans, they may offer highly reproducible results for mAb therapy and toxicity studies.
Assuntos
Genótipo , Macaca fascicularis , Receptores de IgG/genética , Alelos , Animais , Citotoxicidade Celular Dependente de Anticorpos , Frequência do Gene , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade , Imunoglobulina G/metabolismo , Modelos Animais , Ligação Proteica/genética , Receptores de IgG/metabolismoRESUMO
Previous studies have identified a series of imidazo[1,2-a]pyridine (IZP) derivatives as potent allosteric inhibitors of HIV-1 integrase (ALLINIs) and virus infection in cell culture. However, IZPs were also found to be relatively potent activators of the pregnane-X receptor (PXR), raising the specter of induction of CYP-mediated drug disposition pathways. In an attempt to modify PXR activity without affecting anti-HIV-1 activity, rational structure-based design and modeling approaches were used. An X-ray cocrystal structure of (S,S)-1 in the PXR ligand binding domain (LBD) allowed an examination of the potential of rational structural modifications designed to abrogate PXR. The introduction of bulky basic amines at the C-8 position provided macrocyclic IZP derivatives that displayed potent HIV-1 inhibitory activity in cell culture with no detectable PXR transactivation at the highest concentration tested.
Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Receptor de Pregnano X/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Receptor de Pregnano X/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacosRESUMO
The NaV1.7 voltage-gated sodium channel is implicated in human pain perception by genetics. Rare gain of function mutations in NaV1.7 lead to spontaneous pain in humans whereas loss of function mutations results in congenital insensitivity to pain. Hence, agents that specifically modulate the function of NaV1.7 have the potential to yield novel therapeutics to treat pain. The complexity of the channel and the challenges to generate recombinant cell lines with high NaV1.7 expression have led to a surrogate target strategy approach employing chimeras with the bacterial channel NaVAb. In this report we describe the design, synthesis, purification, and characterization of a chimera containing part of the voltage sensor domain 2 (VSD2) of NaV1.7. Importantly, this chimera, DII S1-S4, forms functional sodium channels and is potently inhibited by the NaV1.7 VSD2 targeted peptide toxin ProTx-II. Further, we show by [125I]ProTx-II binding and surface plasmon resonance that the purified DII S1-S4 protein retains high affinity ProTx-II binding in detergent. We employed the purified DII S1-S4 protein to create a scintillation proximity assay suitable for high-throughput screening. The creation of a NaV1.7-NaVAb chimera with the VSD2 toxin binding site provides an important tool for the identification of novel NaV1.7 inhibitors and for structural studies to understand the toxin-channel interaction.
Assuntos
Proteínas de Bactérias/química , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Proteínas Recombinantes de Fusão/química , Venenos de Aranha/metabolismo , Canais de Sódio Disparados por Voltagem/química , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Células HEK293 , Humanos , Ressonância de Plasmônio de Superfície , Canais de Sódio Disparados por Voltagem/fisiologiaRESUMO
An improved expression protocol is proposed for amino acid type-specific [13C], [15N]-isotope labeling of proteins in baculovirus-infected (BV) insect cell cultures. This new protocol modifies the methods published by Gossert et al. (J Biomol NMR 51(4):449-456, 2011) and provides efficient incorporation of isotopically labeled amino acids, with similar yields per L versus unlabeled expression in rich media. Gossert et al. identified the presence of unlabeled amino acids in the yeastolate of the growth medium as a major limitation in isotope labeling using BV-infected insect cells. By reducing the amount of yeastolate in the growth medium ten-fold, a significant improvement in labeling efficiency was demonstrated, while maintaining good protein expression yield. We report an alternate approach to improve isotope labeling efficiency using BV-infected insect cells namely by replacing the yeast extracts in the medium with dialyzed yeast extracts to reduce the amount of low molecular weight peptides and amino acids. We report the residual levels of amino acids in various media formulations and the amino acid consumption during fermentation, as determined by NMR. While direct replacement of yeastolate with dialyzed yeastolate delivered moderately lower isotope labeling efficiencies compared to the use of ten-fold diluted undialized yeastolate, we show that the use of dialyzed yeastolate combined with a ten-fold dilution delivered enhanced isotope labeling efficiency and at least a comparable level of protein expression yield, all at a scale which economizes use of these costly reagents.
Assuntos
Marcação por Isótopo/métodos , Aminoácidos/análise , Aminoácidos/química , Animais , Baculoviridae , Antígenos CD4/biossíntese , Antígenos CD4/química , Antígenos CD4/isolamento & purificação , Isótopos de Carbono , Meios de Cultura/análise , Meios de Cultura/química , Quinase 1 de Adesão Focal/biossíntese , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/isolamento & purificação , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Biossíntese de Proteínas , Células Sf9 , SpodopteraRESUMO
A disulfide-bridged peptide drug development candidate contained two oligopeptide chains with 11 and 12 natural amino acids joined by a disulfide bond at the N-terminal end. An efficient biotechnology based process for the production of the disulfide-bridged peptide was developed. Initially, the two individual oligopeptide chains were prepared separately by designing different fusion proteins and expressing them in recombinant E. coli. Enzymatic or chemical cleavage of the two fusion proteins provided the two individual oligopeptide chains which could be conjugated via disulfide bond by conventional chemical reaction to the disulfide-bridged peptide. A novel heterodimeric system to bring the two oligopeptide chains closer and induce disulfide bond formation was designed by taking advantage of the self-assembly of a leucine zipper system. The heterodimeric approach involved designing fusion proteins with the acidic and basic components of the leucine zipper, additional amino acids to optimize interaction between the individual chains, specific cleavage sites, specific tag to ensure separation, and two individual oligopeptide chains. Computer modeling was used to identify the nature and number of amino acid residue to be inserted between the leucine zipper and oligopeptides for optimum interaction. Cloning and expression in rec E. coli, fermentation, followed by cell disruption resulted in the formation of heterodimeric protein with the interchain disulfide bond. Separation of the desired heterodimeric protein, followed by specific cleavage at methionine by cyanogen bromide provided the disulfide-bridged peptide.
Assuntos
Biotecnologia , Dissulfetos/química , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Modelos Moleculares , Peptídeos/genética , Multimerização Proteica , Estrutura Quaternária de ProteínaRESUMO
Proprotein convertase subtilisin kexin-9 (PCSK9) is an important pharmacological target for decreasing low-density lipoprotein (LDL) in cardiovascular disease, although seemingly inaccessible to small molecule approaches. Compared with therapeutic IgG antibodies currently in development, targeting circulating PCSK9 with smaller molecular scaffolds could offer different profiles and reduced dose burdens. This inspired genesis of PCSK9-binding Adnectins, a protein family derived from human fibronectin-10th-type III-domain and engineered for high-affinity target binding. BMS-962476, an â¼11-kDa polypeptide conjugated to polyethylene glycol to enhance pharmacokinetics, binds with subnanomolar affinity to human. The X-ray cocrystal structure of PCSK9 with a progenitor Adnectin shows â¼910 Å(2) of PCSK9 surface covered next to the LDL receptor binding site, largely by residues of a single loop of the Adnectin. In hypercholesterolemic, overexpressing human PCSK9 transgenic mice, BMS-962476 rapidly lowered cholesterol and free PCSK9 levels. In genomic transgenic mice, BMS-962476 potently reduced free human PCSK9 (ED50 â¼0.01 mg/kg) followed by â¼2-fold increases in total PCSK9 before return to baseline. Treatment of cynomolgus monkeys with BMS-962476 rapidly suppressed free PCSK9 >99% and LDL-cholesterol â¼55% with subsequent 6-fold increase in total PCSK9, suggesting reduced clearance of circulating complex. Liver sterol response genes were consequently downregulated, following which LDL and total PCSK9 returned to baseline. These studies highlight the rapid dynamics of PCSK9 control over LDL and liver cholesterol metabolism and characterize BMS-962476 as a potent and efficacious PCSK9 inhibitor.
Assuntos
Anticolesterolemiantes/farmacologia , Lipoproteínas LDL/sangue , Polietilenoglicóis/farmacologia , Pró-Proteína Convertases/antagonistas & inibidores , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , HDL-Colesterol/sangue , Cristalização , Feminino , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Pró-Proteína Convertases/metabolismo , Ratos , Receptores de LDL/antagonistas & inibidores , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Especificidade da EspécieRESUMO
Heat-shock protein 47 (HSP47) is a potential target for inhibitors that ameliorate fibrosis by reducing collagen assembly. In an effort to develop a structure-based drug-design system, it was not possible to replicate a previous literature result (PDB entry 4au4) for apo dog HSP47; instead, crystal forms were obtained in which pairs of dog HSP47 molecules interacted through a noncleavable C-terminal His-tag to build up tetramers, all of which had multiple molecules of HSP47 in the asymmetric unit and none of which diffracted as well as the literature precedent. To overcome these difficulties, a two-pronged approach was followed: (i) the His-tag was moved from the C-terminus to the N-terminus and was made cleavable, and (ii) Adnectin (derived from the tenth domain of human fibronectin type III) crystallization chaperones were developed. Both approaches provided well diffracting crystals, but the latter approach yielded crystal forms with only one or two HSP47 complexes per asymmetric unit, which made model building less onerous.
RESUMO
While several farnesoid X receptor (FXR) agonists under clinical investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clinical efficacy and approvability. Herein, we report the discovery and preclinical evaluation of compound 32 (BMS-986339), a nonbile acid FXR agonist with a pharmacologically distinct profile relative to our previously reported agonist BMS-986318. Compound 32 exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo. To our knowledge, this is the first report that demonstrates differential induction of Fgf15 in the liver and ileum by FXR agonists in vivo. Compound 32 demonstrated robust antifibrotic efficacy despite reduced activation of certain genes in the liver, suggesting that the additional pharmacology of BMS-986318 does not further benefit efficacy, possibly presenting an opportunity for reduced adverse effects. Further evaluation in humans is warranted to validate this hypothesis.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Citoplasmáticos e NuclearesRESUMO
Protein tyrosine phosphatase γ is a membrane-bound receptor and is designated RPTPγ. RPTPγ and two mutants, RPTPγ(V948I, S970T) and RPTPγ(C858S, S970T), were recombinantly expressed and purified for X-ray crystallographic studies. The purified enzymes were crystallized using the hanging-drop vapor-diffusion method. Crystallographic data were obtained from several different crystal forms in the absence and the presence of inhibitor. In this paper, a description is given of how three different crystal forms were obtained that were used with various ligands. An orthorhombic crystal form and a trigonal crystal form were obtained both with and without ligand, and a monoclinic crystal form was only obtained in the presence of a particularly elaborated inhibitor.
Assuntos
Domínio Catalítico , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/isolamento & purificaçãoRESUMO
Hematopoietic progenitor kinase 1 (HPK1) is an intracellular kinase that plays an important role in modulating tumor immune response and thus is an attractive target for drug discovery. Crystallization of the wild-type HPK1 kinase domain has been hampered by poor expression in recombinant systems and poor solubility. In this study, yeast surface display was applied to a library of HPK1 kinase-domain variants in order to select variants with an improved expression level and solubility. The HPK1 variant with the most improved properties contained two mutations, crystallized readily in complex with several small-molecule inhibitors and provided valuable insight to guide structure-based drug design. This work exemplifies the benefit of yeast surface display towards engineering crystallizable proteins and thus enabling structure-based drug discovery.
Assuntos
Engenharia de Proteínas/métodos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Técnicas de Visualização da Superfície Celular , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutagênese , Mutação , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genéticaRESUMO
Scaffold hopping and structure-based drug design were employed to identify substituted 4-aminoquinolines and 4-aminonaphthyridines as potent, small molecule inhibitors of tumor necrosis factor alpha (TNFα). Structure-activity relationships in both the quinoline and naphthyridine series leading to the identification of compound 42 with excellent potency and pharmacokinetic profile are discussed. X-ray co-crystal structure analysis and ultracentrifugation experiments clearly demonstrate that these inhibitors distort the TNFα trimer upon binding, leading to aberrant signaling when the trimer binds to TNF receptor 1 (TNFR1). Pharmacokinetic-pharmacodynamic activity of compound 42 in a TNF-induced IL-6 mouse model and in vivo activity in a collagen antibody-induced arthritis model, where it showed biologic-like in vivo efficacy, will be discussed.
Assuntos
Naftiridinas/farmacologia , Quinolinas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Desenho de Fármacos , Feminino , Humanos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Naftiridinas/síntese química , Naftiridinas/farmacocinética , Naftiridinas/uso terapêutico , Estudo de Prova de Conceito , Quinolinas/síntese química , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Multidrug resistance proteins (MRPs) are members of the "C" branch of the ATP-binding cassette transporter superfamily. Human MRP1 transports a wide range of natural product drugs and structurally diverse conjugated and unconjugated organic anions. Its closest relative is MRP3. Despite their structural similarity, the homologs differ substantially in their substrate specificity. It is noteworthy that MRP1 transports glutathione (GSH) and GSH conjugates and displays GSH-stimulated transport of a number of unconjugated and conjugated compounds. In contrast, MRP3 does not transport GSH and is a poor transporter of GSH conjugates. However, both proteins transport glucuronide conjugates, such as 17beta-estradiol 17-(beta-D-glucuronide). We have constructed a series of MRP1/MRP3 hybrids and used them to identify a region of MRP1 that is critical for binding and transport of GSH conjugates such as leukotriene C(4) (LTC(4)). Substitution of this region encompassing transmembrane helices 8 and 9 and portions of cytoplasmic loops 4 and 5 of MRP1 with the equivalent region of MRP3 eliminated LTC(4) transport. Transport of other substrates was either unaffected or enhanced. We identified three residues in this region: Tyr(440), Ile(441), and Met(443), mutation of which differentially affected transport. It is noteworthy that substitution of Tyr(440) with Phe, as found in MRP3, reduced LTC(4) and GSH-stimulated estrone-3-sulfate transport without affecting transport of other substrates tested. The mutation increased the K(m) for LTC(4) 5-fold and substantially reduced photolabeling of MRP1 by both [3H]LTC(4) and the GSH derivative, azidophenacyl-[35S]GSH. These results suggest that Tyr(440) makes a major contribution to recognition of GSH and the GSH moiety of conjugates such as LTC(4).
Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Estradiol/metabolismo , Estrona/análogos & derivados , Estrona/metabolismo , Etoposídeo/farmacologia , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Humanos , Cinética , Leucotrieno C4/metabolismo , Metotrexato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/genética , Transfecção , Vincristina/farmacologiaRESUMO
Parasites from the protozoan phylum Apicomplexa are responsible for diseases, such as malaria, toxoplasmosis and cryptosporidiosis, all of which have significantly higher rates of mortality and morbidity in economically underdeveloped regions of the world. Advances in vaccine development and drug discovery are urgently needed to control these diseases and can be facilitated by production of purified recombinant proteins from Apicomplexan genomes and determination of their 3D structures. To date, both heterologous expression and crystallization of Apicomplexan proteins have seen only limited success. In an effort to explore the effectiveness of producing and crystallizing proteins on a genome-scale using a standardized methodology, over 400 distinct Plasmodium falciparum target genes were chosen representing different cellular classes, along with select orthologues from four other Plasmodium species as well as Cryptosporidium parvum and Toxoplasma gondii. From a total of 1008 genes from the seven genomes, 304 (30.2%) produced purified soluble proteins and 97 (9.6%) crystallized, culminating in 36 crystal structures. These results demonstrate that, contrary to previous findings, a standardized platform using Escherichia coli can be effective for genome-scale production and crystallography of Apicomplexan proteins. Predictably, orthologous proteins from different Apicomplexan genomes behaved differently in expression, purification and crystallization, although the overall success rates of Plasmodium orthologues do not differ significantly. Their differences were effectively exploited to elevate the overall productivity to levels comparable to the most successful ongoing structural genomics projects: 229 of the 468 target genes produced purified soluble protein from one or more organisms, with 80 and 32 of the purified targets, respectively, leading to crystals and ultimately structures from one or more orthologues.
Assuntos
Genoma de Protozoário/genética , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , SolubilidadeRESUMO
Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase involved in the phosphorylation of MAP proteins that regulate microtubule dynamics. Abnormal activity of MARK4 has been proposed to contribute to neurofibrillary tangle formation in Alzheimer's disease. The crystal structure of the catalytic and ubiquitin-associated domains of MARK4 with a potent pyrazolopyrimidine inhibitor has been determined to 2.8â Å resolution with an Rwork of 22.8%. The overall structure of MARK4 is similar to those of the other known MARK isoforms. The inhibitor is located in the ATP-binding site, with the pyrazolopyrimidine group interacting with the inter-lobe hinge region while the aminocyclohexane moiety interacts with the catalytic loop and the DFG motif, forcing the activation loop out of the ATP-binding pocket.
Assuntos
Cristalização/métodos , Cristalografia por Raios X/métodos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismoRESUMO
The cytokine TGF-ß modulates a number of cellular activities and plays a critical role in development, hemostasis and physiology, as well as in diseases including cancer and fibrosis. TGF-ß signals through two transmembrane serine/threonine kinase receptors: TGFßR1 and TGFßR2. Multiple structures of the TGFßR1 kinase domain are known, but the structure of TGFßR2 remains unreported. Wild-type TGFßR2 kinase domain was refractory to crystallization, leading to the design of two mutated constructs: firstly, a TGFßR1 chimeric protein with seven ATP-site residues mutated to their counterparts in TGFßR2, and secondly, a reduction of surface entropy through mutation of six charged residues on the surface of the TGFßR2 kinase domain to alanines. These yielded apo and inhibitor-bound crystals that diffracted to high resolution (<2â Å). Comparison of these structures with those of TGFßR1 reveal shared ligand contacts as well as differences in the ATP-binding sites, suggesting strategies for the design of pan and selective TGFßR inhibitors.
Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismoRESUMO
The human pregnane X receptor (PXR) is a promiscuous nuclear receptor that functions as a sensor to a wide variety of xenobiotics and regulates expression of several drug metabolizing enzymes and transporters. We have generated "Adnectins", derived from 10th fibronectin type III domain ((10)Fn3), that target the PXR ligand binding domain (LBD) interactions with the steroid receptor co-activator-1 (SRC-1) peptide, displacing SRC-1 binding. Adnectins are structurally homologous to the immunoglobulin superfamily. Three different co-crystal structures of PXR LBD with Adnectin-1 and CCR1 (CC chemokine receptor-1) antagonist Compound-1 were determined. This structural information was used to modulate PXR affinity for a related CCR1 antagonist compound that entered into clinical trials for rheumatoid arthritis. The structures of PXR with Adnectin-1 reveal specificity of Adnectin-1 in not only targeting the interface of the SRC-1 interactions but also engaging the same set of residues that are involved in binding of SRC-1 to PXR. Substituting SRC-1 with Adnectin-1 does not alter the binding conformation of Compound-1 in the ligand binding pocket. The structure also reveals the possibility of using Adnectins as crystallization chaperones to generate structures of PXR with compounds of interest.
Assuntos
Coativador 1 de Receptor Nuclear/química , Receptores CCR1/antagonistas & inibidores , Receptores de Esteroides/química , Ureia/análogos & derivados , Valina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Lignanas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Receptor de Pregnano X , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CCR1/metabolismo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície , Ureia/química , Ureia/metabolismo , Ureia/farmacologia , Valina/química , Valina/metabolismo , Valina/farmacologiaRESUMO
The development of novel gene expression systems for cytochrome P450s (CYPs) together with a revolution in analytical mass spectrometry with the emergence of liquid chromatography/mass spectrometry (LC/MS) has opened the door to answering some long-standing questions in Vitamin D metabolism. Our studies focused on: (1) elucidating the role of CYP24 in 25-OH-D3 and 1alpha,25-(OH)2D3 metabolism; (2) exploring how DBP influences this process; (3) measuring 25-OH-D3 metabolism in CYP24-knockout (CYP24-XO) cells and; (4) comparing 1alpha-OH-D2 metabolism in the CYP24-XO mouse in vivo and in vitro. Methodology employed CYP24 over-expression and knockout systems in conjunction with state-of-the-art analytical LC/MS, diode array, and radioisotopic detection methods. We found that CYP24 metabolizes 25-OH-D3 and 1alpha,25-(OH)2D3 at similar rates in vitro, but that for 25-OH-D3 but not 1alpha,25-(OH)2D3, this rate is strongly influenced by the concentration of DBP. Unlike their wild type littermates, the administration of 25-OH-D3 to CYP24-XO mice results in no measurable 24,25-(OH)2D3 production. When neonatal murine keratinocytes are prepared from wild type and CYP24-XO mice there was no measurable production of 24,25-(OH)2D3 or 1alpha,24,25-(OH)2D3 in CYP24-XO mice. Similar experiments using the same wild type and CYP24-XO animals and cells and [3H] 1alpha-OH-D2 resulted in the apparent paradox that the Vitamin D prodrug was 25-hydroxylated in vivo but 24-hydroxylated in vitro.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Espectrometria de Massas/métodos , Esteroide Hidroxilases/metabolismo , Vitamina D/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Camundongos , Camundongos Knockout , Esteroide Hidroxilases/genética , Vitamina D3 24-HidroxilaseRESUMO
The elucidation of the metabolic pathway for vitamin D, including the delineation of the specific cytochrome P450s (CYPs) involved in activation and catabolism, has emphasized the overall importance of metabolic considerations in vitamin D analog design. This short review attempts to summarize recent findings with isolated CYPs and animal models in which CYPs are genetically manipulated to draw attention to structural features of vitamin D analogs that make them more or less resistant to metabolic enzymes. We conclude by placing metabolic considerations in the context of the other important aspects of vitamin D analogs.
Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Neoplasias/enzimologia , Vitamina D/metabolismo , Animais , Resistência a Medicamentos , Previsões , Humanos , Inativação Metabólica , Neoplasias/metabolismo , Neoplasias/patologia , Vitamina D/análogos & derivados , Vitamina D/farmacologiaRESUMO
Tau-tubulin kinase 1 (TTBK1) is a dual-specificity (serine/threonine and tyrosine) kinase belonging to the casein kinase 1 superfamily. TTBK1 is a neuron-specific kinase that regulates tau phosphorylation. Hyperphosphorylation of tau is implicated in the pathogenesis of Alzheimer's disease. Two kinase-domain constructs of TTBK1 were expressed in a baculovirus-infected insect-cell system and purified. The purified TTBK1 kinase-domain proteins were crystallized using the hanging-drop vapor-diffusion method. X-ray diffraction data were collected and the structure of TTBK1 was determined by molecular replacement both as an apo structure and in complex with a kinase inhibitor.