Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 146(29): 20391-20400, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987861

RESUMO

Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru1 catalysts, namely, Ru1/UiO-67-X (X = -H, -m-(NH2)2, -o-(NH2)2), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru1 sites is modulated by altering the location of amino groups. The -NH2 group can form hydrogen bonds with H2O, constituting a unique microenvironment that causes an increased water concentration around the Ru1 sites. Remarkably, Ru1/UiO-67-o-(NH2)2 displays a superior photocatalytic hydrogen production rate, ∼4.6 and ∼146.6 times of Ru1/UiO-67-m-(NH2)2 and Ru1/UiO-67, respectively. Both experimental and computational results suggest that the close proximity of amino groups to the Ru1 sites in Ru1/UiO-67-o-(NH2)2 improves charge transfer and H2O dissociation, accounting for the promoted photocatalytic hydrogen production.

2.
J Sci Food Agric ; 104(4): 2449-2457, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37961839

RESUMO

BACKGROUND: The shortage of water resources and the increase of greenhouse gas emissions from soil seriously restrict the sustainable development of agriculture. Under the premise of ensuring a stable yield of winter wheat through a reasonable irrigation scenario, identifying a suitable straw returning method will have a positive effect on agricultural carbon sequestration and emission reduction in North China Plain. RESULTS: Straw burying (SR) and straw mulching (SM) were adopted based on traditional tillage under in the winter wheat growing season of 2020-2021 and 2021-2022. Three irrigation scenarios were used for each straw returning method: no irrigation (I0), irrigation 60 mm at jointing stage (I1), and irrigation of 60 mm each at the jointing and heading stages (I2). Soil moisture, soil respiration rate, cumulative soil CO2 emissions, yield, water use efficiency (WUE) and soil CO2 emission efficiency (CEE) were mainly studied. The results showed that, compared to SM, SR improved the utilization of soil water and enhanced soil carbon sequestration. SR reduced soil respiration rate and cumulative soil CO2 emissions in two winter wheat growing seasons, and increased yield by increasing spike numbers. In addition, with an increase in the amount of irrigation, soil CO2 emissions and yield increased. Under SR-I1 treatment, WUE and CEE were the highest. SR-I1 increases crop yields at the same time as reducing soil CO2 emissions. CONCLUSION: The combination of SR and irrigation 60 mm at jointing stage is a suitable straw returning irrigation scenario, which can improve water use and reduce soil CO2 emission in NCP. © 2023 Society of Chemical Industry.


Assuntos
Solo , Triticum , Estações do Ano , Dióxido de Carbono/análise , Água , Carbono , Agricultura/métodos , China
3.
Angew Chem Int Ed Engl ; : e202410097, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953455

RESUMO

While supported metal nanoparticles (NPs) have shown significant promise in heterogeneous catalysis, precise control over their interaction with the support, which profoundly impacts their catalytic performance, remains a significant challenge. In this study, Pt NPs are incorporated into thioether-functionalized covalent organic frameworks (denoted COF-Sx), enabling precise control over the size and electronic state of Pt NPs by adjusting the thioether density dangling on the COF pore walls. Notably, the resulting Pt@COF-Sx demonstrate exceptional selectivity (>99%) in catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline, in sharp contrast to the poor selectivity of Pt NPs embedded in thioether-free COFs. Furthermore, the conversion over Pt@COF-Sx exhibits a volcano-type curve as the thioether density increases, due to the corresponding change of accessible Pt sites. This work provides an effective approach to regulating the catalysis of metal NPs via their microenvironment modulation, with the aid of rational design and precise tailoring of support structure.

4.
Pharmacol Res ; 198: 106986, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944834

RESUMO

Tumor cell extravasation across endothelial barrier has been recognized as a pivotal event in orchestrating metastasis formation. This event is initiated by the interactions of extravasating tumor cells with endothelial cells (ECs). Therefore, targeting the crosstalk between tumor cells and ECs might be a promising therapeutic strategy to prevent metastasis. In this study, we demonstrated that Rh1, one of the main ingredients of ginseng, hindered the invasion of breast cancer (BC) cells as well as diminished the permeability of ECs both in vitro and in vivo, which was responsible for the attenuated tumor cell extravasation across endothelium. Noteworthily, we showed that ECs were capable of inducing the epithelial-mesenchymal transition (EMT) and invadopodia of BC cells that are essential for tumor cell migration and invasion through limiting the nuclear translocation of hematopoietically expressed homeobox (HHEX). The decreased nuclear HHEX paved the way for initiating the CCL20/CCR6 signaling axis, which in turn contributed to damaged endothelial junctions, uncovering a new crosstalk mode between tumor cells and ECs. Intriguingly, Rh1 inhibited the kinase activity of casein kinase II subunit alpha (CK2α) and further promoted the nuclear translocation of HHEX in the BC cells, which resulted in the disrupted crosstalk between chemokine (C-C motif) ligand 20 (CCL20) in the BC cells and chemokine (C-C motif) receptor 6 (CCR6) in the ECs. The prohibited CCL20-CCR6 axis by Rh1 enhanced vascular integrity and diminished tumor cell motility. Taken together, our data suggest that Rh1 serves as an effective natural CK2α inhibitor that can be further optimized to be a therapeutic agent for reducing tumor cell extravasation.


Assuntos
Caseína Quinase II , Genes Homeobox , Células Endoteliais , Endotélio , Quimiocinas
5.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299906

RESUMO

Human behavior recognition technology is widely adopted in intelligent surveillance, human-machine interaction, video retrieval, and ambient intelligence applications. To achieve efficient and accurate human behavior recognition, a unique approach based on the hierarchical patches descriptor (HPD) and approximate locality-constrained linear coding (ALLC) algorithm is proposed. The HPD is a detailed local feature description, and ALLC is a fast coding method, which makes it more computationally efficient than some competitive feature-coding methods. Firstly, energy image species were calculated to describe human behavior in a global manner. Secondly, an HPD was constructed to describe human behaviors in detail through the spatial pyramid matching method. Finally, ALLC was employed to encode the patches of each level, and a feature coding with good structural characteristics and local sparsity smoothness was obtained for recognition. The recognition experimental results on both Weizmann and DHA datasets demonstrated that the accuracy of five energy image species combined with HPD and ALLC was relatively high, scoring 100% in motion history image (MHI), 98.77% in motion energy image (MEI), 93.28% in average motion energy image (AMEI), 94.68% in enhanced motion energy image (EMEI), and 95.62% in motion entropy image (MEnI).


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão , Humanos , Reconhecimento Automatizado de Padrão/métodos
6.
Angew Chem Int Ed Engl ; 62(26): e202305212, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37129888

RESUMO

The chemical microenvironment modulation of metal nanoparticles (NPs) holds promise for tackling the long-lasting challenge of the trade-off effect between activity and selectivity in catalysis. Herein, ultrafine PdCu2 NPs incorporated into covalent organic frameworks (COFs) with diverse groups on their pore walls have been fabricated for the semihydrogenation of alkynes. The Cu species, as the primary microenvironment of Pd active sites, greatly improves the selectivity. The functional groups as the secondary microenvironment around PdCu2 NPs effectively regulate the activity, in which PdCu2 NPs encapsulated in the COF bearing -CH3 groups exhibit the highest activity with >99 % conversion and 97 % selectivity. Both experimental and calculation results suggest that the functional group affects the electron-donating ability of the COFs, which successively impacts the charge transfer between COFs and Pd sites, giving rise to a modulated Pd electronic state and excellent catalytic performance.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Alcinos , Catálise , Eletrônica
7.
Angew Chem Int Ed Engl ; 62(48): e202311625, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37656120

RESUMO

The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal-organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2 , -NH2 ), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.

8.
Angew Chem Int Ed Engl ; 61(32): e202206108, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670014

RESUMO

Charge transfer between metal sites and supports is crucial for catalysis. Redox-inert supports are usually unfavorable due to their less electronic interaction with metal sites, which, we demonstrate, is not always correct. Herein, three metal-organic frameworks (MOFs) are chosen to mimic inert or active supports for Pt nanoparticles (NPs) and the photocatalysis is studied. Results demonstrate the formation of a Schottky junction between Pt and the MOFs, leading to the electron-donation effect of the MOFs. Under light irradiation, both the MOF electron-donation effect and Pt interband excitation dominate the Pt electron density. Compared with the "active" UiO-66 and MIL-125 supports, Pt NPs on the "inert" ZIF-8 exhibit higher electron density due to the higher Schottky barrier, resulting in superior photocatalytic activity. This work optimizes metal catalysts with non-reducible supports, and promotes the understanding of the relationship between the metal-support interaction and photocatalysis.

9.
Angew Chem Int Ed Engl ; 61(47): e202211216, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36165270

RESUMO

The exposed facets of supported catalysts play a crucial role in catalysis; however, they are usually ignored and related studies remain rare. Herein, we have fabricated a series of sandwich-structured metal-organic framework composites, denoted ZIF-8X @Pd@ZIF-8 (x represents the morphology of ZIF-8 core, i.e., ZIF-8C exposing (100) facet, ZIF-8RD exposing (110) facet, and ZIF-8TRD exposing mixed (100) and (110) facets), featuring Pd nanoparticles deposited on the specific crystal facets of ZIF-8 core, for hydrogenation of p-chloronitrobenzene. The Pd electronic state is tailored by the ZIF-8 core, where more electron-deficient Pd is found in ZIF-8C @Pd@ZIF-8 than that in ZIF-8RD @Pd@ZIF-8, leading to discriminative adsorption of the -NO2 and -Cl groups of p-chloronitrobenzene. Consequently, ZIF-8C @Pd@ZIF-8 exhibits excellent activity (97.6 %) and selectivity (98.1 %) to p-chloroaniline. This work highlights crystal facet engineering of supports to modulate the microenvironment and electronic state of supported metal nanoparticles, offering a promising avenue to enhanced catalysis.

10.
Inorg Chem ; 60(9): 6152-6156, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33847494

RESUMO

Herein, we reported a facile strategy for the preparation of trifunctional ionic metal-organic frameworks (MOFs) incorporating imidazolium cation functionalities. This strategy exploits the Debus-Radziszewski reaction to create the cationic imidazole ring by postsynthetic modification, meanwhile introducing exchangeable counteranions. On the basis of this strategy, MIL-101-IMOH-Br- has been synthesized, which combines Lewis acidic sites, Brønsted acidic sites, and nucleophilic centers to achieve catalysis for the carbon dioxide-epoxide cycloaddition into cyclocarbonate without any cocatalyst and solvent.

11.
Inorg Chem ; 58(4): 2261-2264, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30730712

RESUMO

A universal strategy is developed to construct metal-organic framework (MOF)-based superhydrophobic/superoleophilic materials by the reaction of activated MOFs and octadecylamine. In particular, S-MIL-101(Cr) composite can efficiently separate chloroform, toluene, petroleum ether, and n-hexane from water with excellent oil-water separation performance, with potential application in the environmental field.

12.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146456

RESUMO

Multi-pixel photon counting detectors can produce images in low-light environments based on passive photon counting technology. However, the resulting images suffer from problems such as low contrast, low brightness, and some unknown noise distribution. To achieve a better visual effect, this paper describes a denoising and enhancement method based on a block-matching 3D filter and a non-subsampled contourlet transform (NSCT). First, the NSCT was applied to the original image and histogram-equalized image to obtain the sub-band low- and high-frequency coefficients. Regional energy and scale correlation rules were used to determine the respective coefficients. Adaptive single-scale retinex enhancement was applied to the low-frequency components to improve the image quality. The high-frequency sub-bands whose line features were best preserved were selected and processed using a symbol function and the Bayes-shrink threshold. After applying the inverse transform, the fused photon counting image was subjected to an improved block-matching 3D filter, significantly reducing the operation time. The final result from the proposed method was superior to those of comparative methods in terms of several objective evaluation indices and exhibited good visual effects and details from the objective impression.

13.
Inorg Chem ; 57(23): 14467-14470, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411887

RESUMO

A new bifunctional acid-base catalyst, core-shell UiO-66@SNW-1, with robust chemical and thermal stability, recyclability, and durable catalytic activity is synthesized by a convenient, universal strategy. Interestingly, this hybrid material can effectively catalyze deacetalization-Knoevenagel condensation reaction in the presence of excellent compartmentalization to spatially isolate opposing acid-base sites.

14.
Inorg Chem ; 57(4): 2193-2198, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29384372

RESUMO

A series of 12-connected lanthanide cluster based metal-organic frameworks (MOFs) have been constructed by [Ln6(µ3-OH)8(COO-)12] secondary building units (SBUs) and 2-aminobenzenedicarboxylate (BDC-NH2) ligands. These obtained materials exhibit high chemical stability and generic thermal stability, especially in acidic and basic conditions. They also present commendable CO2 adsorption capacity, and Yb-BDC-NH2 was further confirmed by a breakthrough experiment under both dry and wet conditions. Moreover, these materials possess both Lewis acid and Brønsted base sites that can catalyze one-pot tandem deacetalization-Knoevenagel condensation reactions.

15.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602681

RESUMO

Carbonized pollen grains of Typha (CPT) were widely used in clinical for antithrombosis, wound and bleeding in China. In order to ensure the role of drugs, it is very important to control the quality of drugs. However, there is a lack of monitoring methods in the process of charcoal preparation. To characterize the process of CPT, we used thermal analysis, scanning electron microscope (SEM), color measurement, Fourier transform infrared spectrometry (FTIR) and HPLC. In this study, 7 min was the optimal processing time and the heating process condition should be controlled under 272.35 ± 7.23 °C. This comprehensive strategy to depict the whole carbonizing process would provide new ideas for researches on quality control of Traditional Chinese Medicine (TCM) and processing theory of charcoal medicine.


Assuntos
Carvão Vegetal/química , Medicamentos de Ervas Chinesas/química , Typhaceae/química , Calefação , Temperatura Alta , Cinética , Pólen/química , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Inorg Chem ; 56(1): 511-517, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936624

RESUMO

Two hexanuclear Ln(III) cluster-based metal-organic frameworks (MOFs) (Ln = Tb or Eu) and a series of isomorphic bimetallic Ln(III)-MOFs have been synthesized by changing the ratio of Tb(III) and Eu(III) under solvothermal conditions. The excellent linear color tunability (from green to red) makes them suitable for barcode application. In addition, the anionic Ln(III)-MOFs exhibit superior uptake capacity toward methylene blue (MB+) by an ion-exchange process, and its reversible adsorption performance makes 1 suitable for removal of organic dye MB+. The as-prepared anionic hexanuclear Ln(III) cluster-based MOFs can serve as a multifunctional material for an optical and environmental area.

17.
Microorganisms ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792788

RESUMO

The soil contains abundant and diverse microorganisms, which interrelate closely with the aboveground vegetation and impact the structure and function of the forest ecosystem. To explore the effect of vegetation diversity on soil microbial functional diversity in taiga forests, we selected significantly different important values of Larix gmelinii as experimental grouping treatments based on plant investigation from fixed plots in Da Xing'anling Mountains. Following that, we collected soil samples and applied the Biolog-ECO microplate method to investigate differences in carbon source utilization, features of functional diversity in soil microorganisms, and factors influencing them in taiga forests. The AWCD decreased as the important value of Larix gmelinii grew, and soil microorganisms preferred carboxylic acids, amino acids, and carbohydrates over polymers, phenolic acids, and amines. The Shannon and McIntosh indexes decreased significantly with the increase of the important value of Larix gmelinii (p < 0.05) and were positively correlated with soil SOC, MBC, C/N, and pH, but negatively with TN, AP, and AN. Redundancy analysis revealed significant effects on soil microbial functional diversity from soil C/N, SOC, AP, MBC, TN, pH, AN, and WC. To sum up, heterogeneous habitats of taiga forests with different important values altered soil microbial functional diversity.

18.
Nanoscale ; 16(22): 10637-10644, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38738309

RESUMO

The poor hydrostability of most reported metal-organic frameworks (MOFs) has become a daunting challenge in their practical applications. Recently, MOFs combined with multifunctional polymers can act as a functional platform and exhibit unique catalytic performance; they can not only inherit the outstanding properties of the two components but also offer unique synergistic effects. Herein, an original porous polymer-confined strategy has been developed to prepare a superhydrophobic MOF composite to significantly enhance its moisture or water resistance. The selective nucleation and growth of MOF nanocrystals confined in the pore of PDVB-vim are closely related to the structure-directing and coordination-modulating properties of PDVB-vim. The resultant MOF/PDVB-vim composite not only produces superior superhydrophobicity without significantly disturbing the original features but also exhibits a novel catalytic activity in the Friedel-Crafts alkylation reaction of indoles with trans-ß-nitrostyrene because of the accessible sites and synergistic effects.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38051606

RESUMO

Object counting, defined as the task of accurately predicting the number of objects in static images or videos, has recently attracted considerable interest. However, the unavoidable presence of background noise prevents counting performance from advancing further. To address this issue, we created a group and graph attention network (GGANet) for dense object counting. GGANet is an encoder-decoder architecture incorporating a group channel attention (GCA) module and a learnable graph attention (LGA) module. The GCA module groups the feature map into several subfeatures, each of which is assigned an attention factor through the identical channel attention. The LGA module views the feature map as a graph structure in which the different channels represent diverse feature vertices, and the responses between channels represent edges. The GCA and LGA modules jointly avoid the interference of irrelevant pixels and suppress the background noise. Experiments are conducted on four crowd-counting datasets, two vehicle-counting datasets, one remote-sensing counting dataset, and one few-shot object-counting dataset. Comparative results prove that the proposed abbr achieves superior counting performance.

20.
Dalton Trans ; 52(40): 14319-14323, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37791918

RESUMO

A general approach to prepare superhydrophobic MOFs (denoted as MOFs-CF3) through a post-decorating strategy for highly efficient chemical fixation of CO2 was demonstrated. The enhanced catalytic activity of MOFs-CF3 is attributed to a synergistic effect between the Lewis acid sites of MOFs and modification of the electron-withdrawing trifluoromethyl group, which resulted in a high CO2 enrichment capacity. The possible mechanism of cycloaddition catalyzed by the MOFs-CF3 catalyst was also proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA