Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850614

RESUMO

Perovskite CsPbBr3 semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties, demonstrating strong potential for γ-radiation and X-ray detection at room temperature. However, the total dose effects of the perovskite CsPbBr3 must be considered when working in a long-term radiation environment. In this work, the Schottky type of perovskite CsPbBr3 detector was fabricated. Their electrical characteristics and γ-ray response were investigated before and after 60Co γ ray irradiation with 100 and 200 krad (Si) doses. The γ-ray response of the Schottky-type planar CsPbBr3 detector degrades significantly with the increase in total dose. At the total dose of 200 krad(Si), the spectral resolving ability to γ-ray response of the CsPbBr3 detector has disappeared. However, with annealing at room temperature for one week, the device's performance was partially recovered. Therefore, these results indicate that the total dose effects strongly influence the detector performance of the perovskite CsPbBr3 semiconductor. Notably, it is concluded that the radiation-induced defects are not permanent, which could be mitigated even at room temperature. We believe this work could guide the development of perovskite detectors, especially under harsh radiation conditions.

2.
ACS Appl Mater Interfaces ; 14(1): 1489-1495, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962385

RESUMO

The scintillator is a unique class of luminescent materials, which is of great significance in clinical diagnosis, security inspection, and radiation detection. Herein, an all-inorganic Cs4PbI6 single crystals (SCs) as a nanosecond and an efficient X-ray and α particle scintillator is described. The radioluminescence (RL) spectrum of Cs4PbI6 SCs under X-ray excitation consists of a band gap emission at 310 nm and a broadband emission at 552 nm at room temperature. Furthermore, Cs4PbI6 SCs demonstrate nanosecond decay times of 0.95 and 6.86 ns, a high sensitivity to low-energy X-ray (30 keV) with a low detection limit (187 nGyair/s), and a favorable linearity detection range, potentially enabling their broad application in X-ray imaging. Under 237Np α particle irradiation, the light yield of Cs4PbI6 SCs is about 49.5% of that of a BGO scintillator with an energy resolution of 35% at 4.78 MeV. Our results demonstrate the potential of Cs4PbI6 SCs as a nanosecond and low-cost scintillator in radiation detection applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA