Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36840509

RESUMO

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Assuntos
Incrustação Biológica , Bivalves , DNA Ambiental , Animais , DNA Ambiental/genética , Água , Ecossistema , Bivalves/genética
2.
Mol Ecol ; 31(13): 3598-3612, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35560847

RESUMO

While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.


Assuntos
Epigenômica , Variação Genética , Adaptação Fisiológica/genética , Epigênese Genética , Variação Genética/genética , Genética Populacional , Genoma
3.
Genetica ; 146(2): 227-234, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29476381

RESUMO

Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.


Assuntos
Espécies Introduzidas , Polimorfismo de Nucleotídeo Único , Urocordados/genética , Animais , Evolução Molecular , Genoma , Genômica , Modelos Animais , Análise de Sequência de DNA
4.
Mol Ecol ; 26(16): 4351-4360, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28599072

RESUMO

The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high-throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant-related factors such as total phosphorus and chlorophyll-a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.


Assuntos
Distribuição Animal , Rios , Poluição da Água , Zooplâncton/classificação , Animais , China , Ecossistema , Geografia
5.
Mol Ecol ; 26(23): 6621-6633, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29057612

RESUMO

Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.


Assuntos
Adaptação Biológica/genética , Metilação de DNA , Epigênese Genética , Espécies Introduzidas , Urocordados/genética , Animais , Salinidade , Temperatura
6.
Genetica ; 144(5): 601-609, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27660255

RESUMO

Triploid Chinese loach, Misgurnus anguillicaudatus, hybrids between tetraploids from Hubei Province and diploids from Liaoning Province were mated with either diploid wild-type or triploid hybrids to analyze viability and ploidy of the resultant progenies. Both triploid males and females generated fertile gametes, but progenies from the crosses using gametes of triploid hybrids did not survive beyond the larval stages. In crosses between wild-type diploid females and triploid hybrid males, embryos ranging from 2.2n to 2.6n were predominant with a mode of either 2.4n (chromosome numbers 59, 60, 61) or 2.5n (chromosome numbers 62, 63). Those from the crosses between triploid hybrid females and diploid males gave a modal ploidy level at approximately 2.5n in one case, but a shift to a higher ploidy level was observed in other embryos. In the progenies between triploid hybrid females and males, the ploidy level at approximately 3.0n (chromosome numbers 74, 75, 76) was most frequent. The cytogenetic results of the progenies suggest the production of aneuploid gametes with a modal ploidy level at approximately 1.5n in triploid hybrids. However, a shift to higher chromosome numbers in gametes was observed in certain cases, suggesting the involvement of mortality selection of gametes and/or zygotes with lower chromosome numbers.


Assuntos
Aneuploidia , Cipriniformes/genética , Diploide , Hibridização Genética , Tetraploidia , Triploidia , Animais , China , Cruzamentos Genéticos , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Reprodução , Testículo/citologia
7.
Genetica ; 143(5): 555-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26130482

RESUMO

Here, we showed meiotic chromosome configurations prepared from oocyte germinal vesicles and spermatocytes of triploid loaches produced from reciprocal crosses between wild-type diploids (2n = 50) obtained from Dalian, Liaoning Province, China and natural tetraploids (4n = 100) from Chibi, Hubei Province, China. Major meiotic cells in triploids comprised 25 bivalents and 25 univalents, but cells with one to five trivalents were also observed. When three homologous chromosomes bearing nucleolar organizing regions (NOR) were identified with the detection of signals or positive sites by silver staining, chromomycin A3 staining and fluorescence in situ hybridization with a 5.8S + 28S rDNA probe, two third of selected triploid cells gave a configuration including one bivalent with two NORs (association of two homologous chromosomes) and one univalent with one NOR. However, other triploid cells showed three univalent each of which had one NOR, suggesting a failure of synapsis between homologous chromosomes. These results suggested that triploid female and male should produce aneuploid gametes with the theoretical mode at 1.5n (37 or 38 chromosomes).


Assuntos
Cipriniformes/genética , Meiose/genética , Animais , China , Cromossomos , Diploide , Feminino , Genótipo , Masculino , Região Organizadora do Nucléolo/genética , Oócitos , Espermatócitos , Tetraploidia , Triploidia
8.
Ecol Evol ; 13(7): e10361, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37502307

RESUMO

The big-headed turtle (Platysternon megacephalum) is an endemic chelonian species in Asia. Unlike most other turtles in the world, P. megacephalum is characterized with eagle-beak jaw, large head, and long tail. Although these unique characteristics are well recognized, the underlying genetic basis remains largely elusive. Here, we performed comparative genomic analysis between P. megacephalum and other representative species, aiming to reveal the genetic basis of the unique morphological features. Our results revealed that the eagle-beak jaw is most likely enabled by combined effects of expansion of SFRP5, extraction of FGF11, and mutation of both ZFYVE16 and PAX6. Large head is supported by mutations of SETD2 and FGRF2 and copy number variations of six head circumference modulation-related genes (TGFBR2, Twist2, Rdh10, Gas1, Chst11, and SNAP25). The long tail is probably involved in a genetic network comprising Gdf11, Lin 28, and HoxC12, two of which showed a consistent expression pattern with a model organism (mice). These findings suggest that expansion, extraction, and mutation of those genes may have profound effects on unique phenotypes of P. megacephalum.

9.
Curr Med Imaging ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312444

RESUMO

BACKGROUND: With the advancement of computer and medical imaging technologies, a number of high-resolution, voxel-based, full-body human anatomical models have been developed for medical education, industrial design, and physics simulation studies. However, these models are limited in many applications because they are often only in an upstanding posture. OBJECTIVE: To quickly develop multi-pose human models for different applications. A semi-automatic framework for voxel deformation is proposed in the study. METHODS: This paper describes a framework for human pose deformation based on three-dimensional (3D) medical images. The voxel model is first converted into a surface model using a surface reconstruction algorithm. Second, a deformation skeleton based on human bones is defined, and the surface model is bound to the skeleton. The bone Glow algorithm is used to assign weights to the surface vertices. Then, the model is deformed to the target posture by using the Smoothed Rotation Enhanced As-Rigid-As-Possible (SR-ARAP) algorithm. Finally, the volume-filling algorithm is applied to refill the tissues into the deformed surface model. RESULTS: The proposed framework is used to deform two standing human models, and the sitting and running models are developed. The results show that the framework can successfully develop the target pose. When compared to the results of the As-Rigid-As-Possible algorithm, SR-ARAP preserves local tissues better. CONCLUSION: The study proposes a frame for voxel human model deformation and improves the local tissue integrity during deformation.

10.
iScience ; 26(8): 107343, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539035

RESUMO

The critically endangered big-headed turtle (Platysternon megacephalum) is currently classified into three subspecies. However, the classification is still controversial and their evolutionary histories are still unclear. Here, multiple genetic analyses consistently revealed three phylogenetic groups with substantial genetic divergences and distinct demographic histories, suggesting three phylogenetic species (P. megacephalum, P. peguense, and Baise clade). Phylogeographical analyses revealed that the Red River plains and Guangxi basins are largely coincident with the boundaries between the three phylogenetic species, highlighting the key role of lowland areas in driving speciation in the big-headed turtle. The Baise clade is characterized by high-linkage disequilibrium but the lowest effective population size, indicating that the cryptic phylogenetic species is more vulnerable to human activities and environmental disturbance, and urgently needs more protection. Our findings provide fundamental insights into the taxonomy and scientific conservation of the family Platysternidae.

11.
Zootaxa ; 5125(2): 131-143, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-36101223

RESUMO

We describe a new species from the Pelodiscus axenaria complex from Hunan and Jiangxi Provinces, China. Also, the application of the name P. axenaria (Zhou, Zhang Fang, 1991) is clarified by designating a neotype for this species. Besides its genetic divergence, the new species differs from all other Pelodiscus species, including the two other taxa constituting the complex (P. axenaria, P. huangshanensis), in the following combination of morphological traits: (1) small adult size, <15 cm carapace length; (2) carapace distinctly keeled, more or less strongly tuberculated, usually olive clay-coloured and adorned with greenish black marbling; (3) plastron yellowish white, typically immaculate except for a blurred-edged blotch behind each axilla that does not extend to the entoplastron and some slight black suffusion along its anterior border; (4) underside of the leathery margin of the carapace with varying amounts of dark pigmentation; (5) head olive clay-coloured with numerous black splotches; (6) chin grey brown with pale stipples, throat dark grey, finely spotted with black; (7) neck with a wide yellow lateral band stretching from the tympanum posteriorly, which tends to fade with age; (8) entoplastron boomerang-shaped, the amount of bending of the transverse bar between the two posteriolaterally directed rami >90.


Assuntos
Répteis , Animais , Argila
12.
Ecol Evol ; 11(9): 4252-4266, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976808

RESUMO

Elucidating molecular mechanisms of environment-driven adaptive evolution in marine invaders is crucial for understanding invasion success and further predicting their future invasions. Although increasing evidence suggests that adaptive evolution could contribute to organisms' adaptation to varied environments, there remain knowledge gaps regarding how environments influence genomic variation in invaded habitats and genetic bases underlying local adaptation for most marine invaders. Here, we performed restriction-site-associated DNA sequencing (RADseq) to assess population genetic diversity and further investigate genomic signatures of local adaptation in the marine invasive ascidian, Molgula manhattensis. We revealed that most invasive populations exhibited significant genetic differentiation, low recent gene flow, and no signal of significant population bottleneck. Based on three genome scan approaches, we identified 109 candidate loci potentially under environmental selection. Redundancy analysis and variance partitioning analysis suggest that local environmental factors, particularly the salinity-related variables, represent crucial evolutionary forces in driving adaptive divergence. Using the newly developed transcriptome as a reference, 14 functional genes were finally obtained with potential roles in salinity adaptation, including SLC5A1 and SLC9C1 genes from the solute carrier gene (SLC) superfamily. Our findings confirm that differed local environments could rapidly drive adaptive divergence among invasive populations and leave detectable genomic signatures in marine invaders.

13.
PeerJ ; 9: e10553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614259

RESUMO

BACKGROUND: Reeves' Turtles (Mauremys reevesii) are economically important in aquaculture in China. Understanding the effects of incubation temperature and substrate moisture on embryos and hatchlings is of great significance for improving the artificial culture of M. reevesii. However, available studies have not yet determined the thermal and hydric optima for M. reevesii eggs, and the potential interaction between the two factors. METHODS: In this study, eggs of M. reevesii were incubated at five temperature levels (23, 26, 29, 32 and 35 °C, fluctuation range ± 0.5 °C). In each temperature level, there were three substrate moisture levels (1:0.5, 1:0.9 and 1:1.2, weight ratio of vermiculite to water). Thus, a total of 15 combinations of temperature and moisture were used to examine the effects of incubation temperature and substrate moisture on incubation duration, hatching success, hatchling phenotypes, post-hatching growth and hatchling survival. RESULTS: Substrate moisture did not significantly affect most development parameters (except incubation duration and carapace width of hatchlings). Eggs incubated at low moisture level (1:0.5) had a longer incubation duration and produced hatchlings with smaller carapace widths than those incubated at medium (1:0.9) or high (1:1.2) moisture levels. Incubation temperature had a significant effect on incubation duration, hatching success, hatchling phenotypes and hatchling survival. Incubation duration decreased as incubation temperature increased. Eggs incubated at 23, 26 and 29 °C showed higher hatching success than those incubated at 32 and 35 °C. Hatchlings incubated at 32 °C were smaller in body size and mass than those incubated at 23, 26 and 29 °C. At 12 months of age, incubation temperature had no long-lasting effect on body mass, but hatchlings incubated at 23 and 35 °C had lower survival rates than those incubated at 26, 29 and 32 °C. For the development of embryos and hatchlings, the interaction between incubation temperature and substrate moisture was not significant. CONCLUSIONS: Our results indicate that incubation temperature has a significant influence on the development of embryos and hatchlings of M. reevesii, while substrate moisture only significantly affects the incubation duration and carapace width of hatchlings. The combination of an incubation temperature of 29 ± 0.5 °C and a substrate moisture level of 1:1.2 represented optimal incubation conditions in this experiment. Such incubation conditions are helpful in obtaining higher hatching success, shorter incubation duration and higher survival rates for this aquaculture species.

14.
Sci Rep ; 11(1): 2328, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504821

RESUMO

Cyrtodactylus species are the most diverse of the geckos and are widely distributed in Southeast Asia, including Thailand. However, their patterns of distribution, especially in northern and western parts of Thailand, remain unknown because few Cyrtodactylus species in these regions have been described. Thus, a data set of mitochondrial NADH dehydrogenase 2 (ND2) gene and flanking tRNAs from Cyrtodactylus found in northern and western Thailand, including contiguous areas, was assembled to elucidate phylogenetic relationships and identify the distribution patterns of these geckos. The results showed four well-supported clades, a northwestern clade (A), a northern clade (B), a western clade (C), and a special clade characterized by specific morphological features (D). Clades A-C were grouped with strong support by the geography of their localities from northern Thailand (Mae Hong Son and Chiang Mai Provinces) along the Tenasserim mountain ranges to Phang-Nga Province, Thailand. Clade D is a distinct clade of Cyrtodactylus species characterized by a tuberculate and prehensile tail and distributed widely in mainland Southeast Asia. Overall, the results suggest a pattern of geographic separation and distribution of Cyrtodactylus in northern and western Thailand. Additionally, this study provides evidence of a hidden biodiversity of Cyrtodactylus in these regions.


Assuntos
Lagartos/genética , Animais , Ásia , Biodiversidade , Lagartos/classificação , NADH Desidrogenase/metabolismo , Filogenia , RNA de Transferência/metabolismo , Tailândia
15.
Curr Biol ; 30(16): R915-R919, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810445

RESUMO

China has about 11% of the world's total wildlife species, so strengthening China's wildlife conservation is of great significance to global biodiversity. Despite some successful cases and conservation efforts, 21.4% of China's vertebrate species are threatened by human activities. The booming wildlife trade in China has posed serious threat to wildlife in China and throughout the world, while leading to a high risk of transmission of infectious zoonotic diseases. China's wildlife conservation has faced a series of challenges, two of which are an impractical, separated management of wildlife and outdated protected species lists. Although the Wildlife Protection Law of China was revised in 2016, the issues of separated management remain, and the protected species lists are still not adequately revised. These issues have led to inefficient and overlapping management, waste of administrative resources, and serious obstacles to wildlife protection. In this article, we analyze the negative effects of current separated management of wildlife species and outdated protected species lists, and provide some suggestions for amendment of the laws and reform of wildlife management system.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Animais , Animais Selvagens , China
16.
Sci Rep ; 9(1): 9668, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273273

RESUMO

Mesozooplankton communities in marine ecosystems are mainly influenced by both anthropogenic pollutants (e.g. nutrients and heavy metals) and natural variables (e.g. temperature, salinity and geographic distance). To achieve a deeper understanding of the effects of anthropogenic pollutants on mesozooplankton communities, we analyzed the community structure of mesozooplankton from 91 stations representing five typical estuarine regions in the Bohai Sea and assessed the relative importance of anthropogenic pollutants and natural variables by using multiple statistical approaches. Cd was identified as the leading pollutant for observed community variation among the five regions, followed by NH4-N and COD. Redundancy analysis (RDA) model demonstrated that mesozooplankton communities were largely determined by both anthropogenic pollutants and natural variables, and the indicator species of mesozooplankton also varied when responding to different factors. Variance partitioning analysis showed both anthropogenic pollutants and natural variables posed significant influences (ANOVA, P < 0.05) on the mesozooplankton community structure, but the explanatory power of anthropogenic pollutants overrode the natural variables. These observations highlighted the importance of anthropogenic pollutants in the shifts of zooplankton structures among different regions. Our results obtained in this study provided new insights into the mechanism of the influence of anthropogenic pollutants on mesozooplankton communities in estuarine areas.

17.
Sci Total Environ ; 646: 1367-1375, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235622

RESUMO

Biofouling by the invasive mussel species Limnoperna fortunei has caused severe negative consequences in various freshwater ecosystems, but there is still a lack of effective antifouling strategies for this species, particularly in drinking water treatment systems where many existing strategies cannot be used. Chemical oxidants have been proposed to potentially control fouling mussels by influencing 3,4­dihydroxyphenylalanine oxidation involved in byssus adhesion. To test this potential control strategy, L. fortunei adults were exposed to four oxidants: sodium hypochlorite (NaClO), potassium permanganate (KMnO4), hydrogen peroxide (H2O2) and chloramine T (CAT) at concentrations of 0.5, 1.0, 3.0 and 5.0 mg L-1 for one week. The results showed that low concentrations of KMnO4 stimulated foot protein secretion, which was beneficial to byssus production (number and length). NaClO and H2O2, but not KMnO4 and CAT, significantly inhibited byssus production and reduced breaking force, causing an increased byssus shedding rate. However, only NaClO dissolved byssus and altered the failure location from the byssal thread to adhesive plaque, even when exposed at low concentrations, showing its great impacts on byssus adhesion. Further analysis of polyphenoloxidase activities and gene expression profiles of LfBP-1, LfFP-2 and LfBP-3 revealed that chemical oxidants affected byssus adhesion by altering Dopa oxidation and foot protein gene expressions. This study, therefore, suggests that a low concentration of NaClO can be used as an alternative and environmentally friendly chemical for controlling L. fortunei biofouling by weakening byssus adhesion.


Assuntos
Incrustação Biológica/prevenção & controle , Bivalves/fisiologia , Oxidantes/química , Animais , Água Doce , Peróxido de Hidrogênio , Navios
18.
PeerJ ; 7: e6733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993050

RESUMO

BACKGROUND: Dinoflagellates have the potential to pose severe ecological and economic damages to aquatic ecosystems. It is therefore largely needed to understand the causes and consequences of distribution patterns of dinoflagellate communities in order to manage potential environmental problems. However, a majority of studies have focused on marine ecosystems, while the geographical distribution patterns of dinoflagellate communities and associated determinants in freshwater ecosystems remain unexplored, particularly in running water ecosystems such as rivers and streams. METHODS: Here we utilized multiple linear regression analysis and combined information on species composition recovered by high-throughput sequencing and spatial and environmental variables to analyze the distribution patterns of dinoflagellate communities along the Songhua River. RESULTS: After high-throughput sequencing, a total of 490 operational taxonomic units (OTUs) were assigned to dinoflagellates, covering seven orders, 13 families and 22 genera. Although the sample sites were grouped into three distinctive clusters with significant difference (p < 0.05) in environmental variables, OTUs-based dinoflagellate communities among the three clusters showed no significant difference (p > 0.05). Among all 24 environmental factors, two environmental variables, including NO3-N and total dissolved solids (TDS), were selected as the significantly influential factors (p < 0.05) on the distribution patterns of dinoflagellate communities based on forward selection. The redundancy analysis (RDA) model showed that only a small proportion of community variation (6.1%) could be explained by both environmental (NO3-N and TDS) and dispersal predictors (watercourse distance) along the River. Variance partitioning revealed a larger contribution of local environmental factors (5.85%) than dispersal (0.50%) to the total variation of dinoflagellate communities. DISCUSSION: Our findings indicated that in addition to the two quantifiable processes in this study (species sorting and dispersal), more unquantifiable stochastic processes such as temporal extinction and colonization events due to rainfall may be responsible for the observed geographical distribution of the dinoflagellate community along the Songhua River. Results obtained in this study suggested that deeper investigations covering different seasons are needed to understand the causes and consequences of geographical distribution patterns of dinoflagellate biodiversity in river ecosystems.

19.
Environ Pollut ; 252(Pt B): 1483-1490, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31265959

RESUMO

Biodiversity in running water ecosystems such as streams and rivers is threatened by chemical pollution derived from anthropogenic activities. Zooplankton are ecologically indicative in aquatic ecosystems, owing to their position of linking the top-down and bottom-up regulators in aquatic food webs, and thus of great potential to assess ecological effects of human-induced pollution. Here we investigated the influence of water pollution on zooplankton communities characterized by metabarcoding in Songhua River Basin in northeast China. Our results clearly showed that varied levels of anthropogenic disturbance significantly influenced water quality, leading to distinct environmental pollution gradients (p < 0.001), particularly derived from total nitrogen, nitrate nitrogen and pH. Redundancy analysis showed that such environmental gradients significantly influenced the geographical distribution of zooplankton biodiversity (R = 0.283, p = 0.001). In addition, along with the trend of increasing environmental pollution, habitat-related indicator taxa were shifted in constituents, altering from large-sized species (e.g. arthropods) in lightly disturbed areas to small-sized organisms (e.g. rotifers and ciliates) in highly disturbed areas. All these findings clearly showed that anthropogenic activity-derived water pollution significantly influenced biological communities. Thus, biotic consequences of human-induced environmental pollution in running water ecosystems should be deeply investigated. More importantly, the findings of biotic consequences should be well integrated into existing monitoring programs to further assess impacts of anthropogenic disturbance, as well as to advance the management of running water ecosystems for conservation and ecological restoration.


Assuntos
Biodiversidade , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Poluição da Água/análise , Zooplâncton/crescimento & desenvolvimento , Animais , China , Ecossistema , Cadeia Alimentar , Humanos , Nitratos/análise , Nitrogênio/análise , Qualidade da Água , Zooplâncton/classificação
20.
Environ Pollut ; 245: 290-299, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445416

RESUMO

Anthropogenic activity-mediated nutrient pollution, especially nitrogen enrichment, poses one of the major threats to river ecosystems. However, it remains unclear how and to which extent it affects aquatic microbial communities, especially in heavily polluted rivers. In this study, a significant environmental gradient, particularly nitrogen gradient, was observed along a wastewater receiving river, the North Canal River (NCR). The pollution level was highest, moderate, and lowest in the up-, middle, and down-streams, respectively. The community composition of bacterioplankton transitioned from being Betaproteobacteria-dominated upstream to Gammaproteobacteria-dominated downstream. Copiotrophic groups, such as Polynucleobacter (Betaproteobacteria) and Hydrogenophaga (Betaproteobacteria), were dominant in the upstream. Multiple statistical analyses indicated that total nitrogen (TN) was the most important factor driving the adaptive shifts of community structure. Analyses of co-occurrence networks showed that the complexity of networks was disrupted in the up- and middle streams, while enhanced in the downstream. Our findings here suggested that microbial interactions were reduced in response to the aggravation of nutrient pollution. Similar to these changes, we observed significant dissimilarity of composition of functional groups, with highest abundance of nitrogen metabolism members under the highest level of nitrogen enrichment. Further analyses indicated that most of these functional groups belonged to Betaproteobacteria, suggesting the potential coupling of community composition and function diversity. In summary, adaptive shifts of bacterioplankton community composition, as well as species interactions, occurred in response to nutrient pollution in highly polluted water bodies.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental/métodos , Microbiota/efeitos dos fármacos , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Betaproteobacteria/efeitos dos fármacos , China , Ecossistema , Eutrofização , Gammaproteobacteria/efeitos dos fármacos , Nitrogênio/toxicidade , Rios/microbiologia , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA