Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Environ Manage ; 366: 121745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991355

RESUMO

Identifying the response characteristics of ecosystem service value (ESV) to changes in spatial scales, known as spatial scale effects, is crucial in guiding the development of corresponding management strategies. This paper examines ESV in China's terrestrial area during the year 2020, revealing the spatial aggregation characteristics of ESV and the trade-off and synergistic relationships of ecosystem services at different spatial scales, ranging from 1 km × 1 km-10 km × 10 km, with a gradient of 1 km. The results indicate: 1) The distribution pattern of ESV in China's terrestrial area is "high in the southeast and low in the northwest." 2) The spatial characteristics of ESV in China's terrestrial area undergo a distinct transition at the 3 km × 3 km scale. In detail, the spatial clustering features show a trend of first rising and then falling with the increase in spatial scale, while the synergistic relationships between different ecosystem services strengthen and the trade-off relationships weaken with the increase of the spatial scale. These findings can inform the formulation of differentiated ecological protection compensation policies and enable cross-area trading of ecological values in China.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China
2.
Environ Sci Technol ; 57(36): 13292-13303, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646073

RESUMO

Identification of the spatial distribution, driving forces, and future trends of agricultural methane (AGM) emissions is necessary to develop differentiated emission control pathways and achieve carbon neutrality by 2060 in China, which is the largest emitter of AGM. However, such research is currently lacking. Here, we estimated China's AGM emissions from 2010 to 2020 and then decomposed six factors that affect AGM emissions via the LMDI model. The results indicated that the AGM emissions in China in 2020 were 23.39 Tg, with enteric fermentation being the largest source, accounting for 43.9% of the total emissions. A total of 39.3% of the AGM emissions were from western China. The main driver of AGM emission reduction was emission intensity, accounting for 59% and 33.7% of methane emission reduction in the livestock sector and rice cultivation, respectively. Additionally, higher levels of urbanization contributed to AGM emission reductions, accounting for 31.3% and 43.0% of the livestock sector and rice cultivation emission reductions, respectively. Based on the SSP-RCP scenarios, we found that China's AGM emissions in 2060 were reduced by approximately 90% through a combination of technology measures, behavioral changes, and innovation policies. Our study provides a scientific basis for optimizing existing AGM emission reduction policies not only in China but also potentially in other high AGM-emitting countries, such as India and Brazil.


Assuntos
Agricultura , Oryza , Animais , Tecnologia , Carbono , China , Gado , Metano
3.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127536

RESUMO

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares , Terapia Genética/métodos , Receptor Celular 1 do Vírus da Hepatite A/genética , Fatores de Transcrição da Família Snail/genética , Fator de Transcrição RelA/genética , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Eritrócitos , Fibrose , Inflamação/terapia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Peptídeos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Traumatismo por Reperfusão/complicações , Fatores de Transcrição da Família Snail/metabolismo , Fator de Transcrição RelA/metabolismo , Obstrução Ureteral/complicações
4.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35746237

RESUMO

Conductive intracardiac communication (CIC) has become one of the most promising technologies in multisite leadless pacemakers for cardiac resynchronization therapy. Existing studies have shown that cardiac pulsation has a significant impact on the attenuation of intracardiac communication channels. In this study, a novel variable-volume circuit-coupled electrical field heart model, which contains blood and myocardium, is proposed to verify the phenomenon. The influence of measurements was combined with the model as the equivalent circuit. Dynamic intracardiac channel characteristics were obtained by simulating models with varying volumes of the four chambers according to the actual cardiac cycle. Subsequently, in vitro experiments were carried out to verify the model's correctness. Among the dependences of intracardiac communication channels, the distance between pacemakers exerted the most substantial influence on attenuation. In the simulation and measurement, the relationship between channel attenuation and pulsation was found through the variable-volume heart model and a porcine heart. The CIC channel attenuation had a variation of less than 3 dB.


Assuntos
Terapia de Ressincronização Cardíaca , Marca-Passo Artificial , Animais , Comunicação , Condutividade Elétrica , Coração , Suínos
5.
Kidney Blood Press Res ; 46(3): 275-285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33887734

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) remains a major cause of end-stage renal disease. The development of novel biomarkers and early diagnosis of DN are of great clinical importance. The goal of this study was to identify hub genes with diagnostic potential for DN by weighted gene co-expression network analysis (WGCNA). METHODS: Gene Expression Omnibus database was searched for microarray data including distinct types of CKD. Gene co-expression network was constructed, and modules specific for DN were identified by WGCNA. Gene ontology (GO) analysis was performed, and the hub genes were screened out within the selected gene modules. In addition, cross-validation was performed in an independent dataset and in samples of renal biopsies with DN and other types of glomerular diseases. RESULTS: Dataset GSE99339 was selected, and a total of 179 microdissected glomeruli samples were analyzed, including DN, normal control, and 7 groups of other glomerular diseases. Twenty-three modules of the total 10,947 genes were grouped by WGCNA, and a module was specifically correlated with DN (r = 0.54, p = 9e-15). GO analysis showed that module genes were mainly enriched in the accumulation of extracellular matrix (ECM). LUM, ELN, FBLN1, MMP2, FBLN5, and FMOD were identified as hub genes. Cross verification showed LUM and FMOD were higher in the DN group and were negatively correlated with estimated glomerular filtration rate (eGFR). In renal biopsies, expression levels of LUM and FMOD were higher in DN than IgA nephropathy, membranous nephropathy, and normal controls. CONCLUSION: By using WGCNA approach, we identified LUM and FMOD related to ECM accumulation and were specific for DN. These 2 genes may represent potential candidate diagnostic biomarkers of DN.


Assuntos
Nefropatias Diabéticas/genética , Matriz Extracelular/genética , Fibromodulina/genética , Lumicana/genética , Nefropatias Diabéticas/patologia , Matriz Extracelular/patologia , Fibromodulina/análise , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Lumicana/análise
6.
Dermatol Ther ; 34(2): e14876, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583124

RESUMO

When congenital melanocytic nevus (CMN) is in the maxillofacial region, a safer, more effective and fewer side-effects treatment is needed for patients with high requirement for appearance. The objective of this study was to investigate the effectiveness of radiofrequency thermal ablation (RFA) for CMN in the maxillofacial region. We reviewed 21 patients treated with RFA for CMN followed by a blinded retrospective analysis of serial photographs taken during the course of their therapy. Questionnaires were used to evaluate perceived therapeutic response and complications of this treatment. Most CMNs stopped growing, faded in color and became smaller. Reduction in size of 90% to 100% was obtained in two patients (10%), 75% to 90% in six patients (29%), 50% to 75% in two patients (10%), <50% in eight patients (38%), and three had no reduction (13%). Clear effect of clinical response score was obtained in two patients (10%), excellent in four patients (19%), good in 14 patients (67%), and fair in one patient (4%). No serious complication, severe hypertrophic scarring, and evidence of recurrence was observed in any case. Percutaneous RFA, as a minimally invasive and safe treatment, may provide an alternative treatment for maxillofacial CMN.


Assuntos
Hipertermia Induzida , Nevo Pigmentado , Neoplasias Cutâneas , Humanos , Nevo Pigmentado/cirurgia , Estudos Retrospectivos , Neoplasias Cutâneas/cirurgia , Inquéritos e Questionários
7.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419134

RESUMO

Intrabody communication (IBC) can achieve better power efficiency and higher levels of security than other traditional wireless communication technologies. Currently, the majority of research on the body channel characteristics of galvanic coupling IBC are motionless and have only been evaluated in the frequency domain. Given the long measuring times of traditional methods, the access to dynamic variations and the simultaneous evaluation of the time-frequency domain remains a challenge for dynamic body channels such as the cardiac channel. To address this challenge, we proposed a parallel measurement methodology with a multi-tone strategy and a time-parameter processing approach to obtain a time-frequency evaluation for dynamic body channels. A group search algorithm has been performed to optimize the crest factor of multitone excitation in the time domain. To validate the proposed methods, in vivo experiments, with both dynamic and motionless conditions were measured using the traditional method and the proposed method. The results indicate that the proposed method is more time efficient (Tmeas = 1 ms) with a consistent performance (ρc > 98%). Most importantly, it is capable of capturing dynamic variations in the body channel and provides a more comprehensive evaluation and richer information for the study of IBC.

8.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823493

RESUMO

Fluorescence immunochromatographic assay (FICA) is a rapid immunoassay technique that has the characteristics of high precision and sensitivity. Although image FICA strip readers have the advantages of high portability and easy operation, the use of high-precision complementary metal oxide semiconductor (CMOS) image sensors leads to an increase in overall cost. Considering the popularity of CMOS image sensors in smartphones and their powerful processing functions, this work developed a smartphone-based FICA strip reader. An optical module suitable for the test strips with different fluorescent markers was designed by replacing the excitation light source and the light filter. An android smartphone was used for image acquisition and image denoising. Then, the test and control lines of the test strip image were recognized by the sliding window algorithm. Finally, the characteristic value of the strip image was calculated. A linear detection range from 10 to 5000 mIU/mL (R2 = 0.95) was obtained for human chorionic gonadotrophin with the maximum relative error less than 9.41%, and a linear detection range from 5 to 4000 pg/mL (R2 = 0.99) was obtained for aflatoxin B1, with the maximum relative error less than 12.71%. Therefore, the smartphone-based FICA strip reader had high portability, versatility, and accuracy.


Assuntos
Imunoensaio , Smartphone , Aflatoxina B1/análise , Corantes , Humanos , Limite de Detecção
9.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905939

RESUMO

As an emerging technology, fluorescence immunochromatographic assay (FICA) has the advantages of high sensitivity, strong stability and specificity, which is widely used in the fields of medical testing, food safety and environmental monitoring. The FICA reader based on image processing meets the needs of point-of-care testing because of its simple operation, portability and fast detection speed. However, the image gray level of common image sensors limits the detection range of the FICA reader, and high-precision image sensors are expensive, which is not conducive to the popularization of the instrument. In this paper, FICA strips' image was collected using a common complementary metal oxide semiconductor (CMOS) image sensor and a range adjustment mechanism was established to automatically adjust the exposure time of the CMOS image sensor to achieve the effect of range expansion. The detection sensitivity showed a onefold increase, and the upper detection limit showed a twofold increase after the proposed method was implemented. In addition, in the experiments of linearity and accuracy, the fitting degree (R2) of the fitted curves both reached 0.999. Therefore, the automatic range adjustment method can obviously improve the detection range of the FICA reader based on image processing.


Assuntos
Processamento de Imagem Assistida por Computador , Imunoensaio/métodos , Algoritmos , Automação , Proteína C-Reativa/análise , Entropia , Fluorescência , Humanos , Limite de Detecção
10.
Biomed Eng Online ; 17(1): 71, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29866126

RESUMO

BACKGROUND: Intra-body communication (IBC) is one of the highlights in studies of body area networks. The existing IBC studies mainly focus on human channel characteristics of the physical layer, transceiver design for the application, and the protocol design for the networks. However, there are few safety analysis studies of the IBC electrical signals, especially for the galvanic-coupled type. Besides, the human channel model used in most of the studies is just a multi-layer homocentric cylinder model, which cannot accurately approximate the real human tissue layer. METHODS: In this paper, the empirical arm models were established based on the geometrical information of six subjects. The thickness of each tissue layer and the anisotropy of muscle were also taken into account. Considering the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the restrictions taken as the evaluation criteria were the electric field intensity lower than 1.35 × 104 f V/m and the specific absorption rate (SAR) lower than 4 W/kg. The physiological electrode LT-1 was adopted in experiments whose size was 4 × 4 cm and the distance between each center of adjoining electrodes was 6 cm. The electric field intensity and localized SAR were all computed by the finite element method (FEM). The electric field intensity was set as average value of all tissues, while SAR was averaged over 10 g contiguous tissue. The computed data were compared with the 2010 ICNIRP guidelines restrictions in order to address the exposure restrictions of galvanic-coupled IBC electrical signals injected into the body with different amplitudes and frequencies. RESULTS: The input alternating signal was 1 mA current or 1 V voltage with the frequency range from 10 kHz to 1 MHz. When the subject was stimulated by a 1 mA alternating current, the average electric field intensity of all subjects exceeded restrictions when the frequency was lower than 20 kHz. The maximum difference among six subjects was 1.06 V/m at 10 kHz, and the minimum difference was 0.025 V/m at 400 kHz. While the excitation signal was a 1 V alternating voltage, the electric field intensity fell within the exposure restrictions gradually as the frequency increased beyond 50 kHz. The maximum difference among the six subjects was 2.55 V/m at 20 kHz, and the minimum difference was 0.54 V/m at 1 MHz. In addition, differences between the maximum and the minimum values at each frequency also decreased gradually with the frequency increased in both situations of alternating current and voltage. When SAR was introduced as the criteria, none of the subjects exceeded the restrictions with current injected. However, subjects 2, 4, and 6 did not satisfy the restrictions with voltage applied when the signal amplitude was ≥ 3, 6, and 10 V, respectively. The SAR differences for subjects with different frequencies were 0.062-1.3 W/kg of current input, and 0.648-6.096 W/kg of voltage input. CONCLUSION: Based on the empirical arm models established in this paper, we came to conclusion that the frequency of 100-300 kHz which belong to LF (30-300 kHz) according to the ICNIRP guidelines can be considered as the frequency restrictions of the galvanic-coupled IBC signal. This provided more choices for both intensities of current and voltage signals as well. On the other hand, it also makes great convenience for the design of transceiver hardware and artificial intelligence application. With the frequency restrictions settled, the intensity restrictions that the current signal of 1-10 mA and the voltage signal of 1-2 V were accessible. Particularly, in practical application we recommended the use of the current signals for its broad application and lower impact on the human tissue. In addition, it is noteworthy that the coupling structure design of the electrode interface should attract attention.


Assuntos
Eletricidade , Análise de Elementos Finitos
11.
Biomed Eng Online ; 16(1): 88, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676056

RESUMO

BACKGROUND: Signal transmission characteristics between implanted medical devices and external equipment has been a common key issue, as has the problem of supplying energy to the devices. It can be used to enable signal transmission from implanted devices that the human body's conductive properties. Using signal transmission by galvanic coupling is one of the most effective signal transmission methods. METHODS: The signal transmission characteristics by galvanic coupling of implantable devices using a frequency range of 10 kHz to 1 MHz was analyzed in this article. A finite element (FEM) model and a phantom model established by visible human leg data were used to investigate the signal transmission characteristics of implant-to-surface, with implantable receiver electrodes at different locations. RESULTS: The results showed that the FEM model and the phantom model had similar implantable signal transmission characteristics, with an increase of frequency, signal attenuation basically remained unchanged. The gain in signal attenuation in the fixed attenuation values fluctuated no more than 5 dB and signal attenuation values rose as the channel length increased. CONCLUSIONS: Our results of signal transmission characteristics of surface-to-implant will provide a theoretical basis for implantable transceiver design, and for realization of a recharging method for implanted medical devices.


Assuntos
Eletrodos Implantados , Análise de Elementos Finitos , Perna (Membro) , Condutividade Elétrica , Humanos , Imagens de Fantasmas , Propriedades de Superfície
12.
Sensors (Basel) ; 16(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27367694

RESUMO

With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).

13.
Sensors (Basel) ; 16(4)2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27049386

RESUMO

Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.

14.
Environ Sci Pollut Res Int ; 31(4): 5429-5443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123768

RESUMO

Limited data have examined the association between air pollution and the risk of end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). We aimed to investigate whether long-term exposure to air pollutants is related to the development of ESRD among patients with T2DM and CKD. A total of 1,738 patients with T2DM and CKD hospitalized in Peking University Third Hospital from January 1, 2013, to December 31, 2021 were enrolled in this study. The outcome was defined as the occurrence of ESRD. Data on six air pollutants (PM2.5, PM10, CO, NO2, SO2, and O3) from 35 monitoring stations were obtained from the Beijing Municipal Ecological and Environmental Monitoring Center. Long-term exposure to air pollutants during the follow-up period was measured using the ordinary Kriging method. During a mean follow-up of 41 months, 98 patients developed ESRD. Multivariate logistic regression analysis showed that an increase of 10 µg/m3 in PM2.5 (odds ratio [OR] 1.19, 95% confidence interval [CI] 1.03-1.36) and PM10 (OR 1.15, 95% CI 1.02-1.30) concentration were positively associated with ESRD. An increase of 1 mg/m3 in CO (2.80, 1.05-7.48) and an increase of 1 µg/m3 in SO2 (1.06, 1.00-1.13) concentration were also positively associated with ESRD. Apart from O3 and NO2, all the above air pollutants have additional predictive value for ESRD in patients with T2DM and CKD. The results of Bayesian kernel machine regression and the weighted quantile sum regression all showed that PM2.5 was the most important air pollutant. Backward stepwise logistic regression showed that PM2.5 was the only pollutant remaining in the prediction model. In patients with T2DM and CKD, long-term exposure to ambient PM2.5, PM10, CO, and SO2 was positively associated with the development of ESRD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Poluentes Ambientais , Falência Renal Crônica , Humanos , Poluentes Atmosféricos/análise , Pequim/epidemiologia , Poluentes Ambientais/análise , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Estudos Retrospectivos , Teorema de Bayes , Dióxido de Nitrogênio/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Falência Renal Crônica/induzido quimicamente , Falência Renal Crônica/epidemiologia , China/epidemiologia , Material Particulado/análise
15.
Acta Biomater ; 174: 177-190, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070843

RESUMO

Wound infections hinder the healing process and potentially result in life-threatening complications, which urgently require rapid and timely detection and treatment pathogens during the early stages of infection. Here, an intelligent wound dressing was developed to enable in situ detection and elimination of pathogenic bacteria through a combination of point-of-care testing and antibacterial photodynamic therapy technology. The dressing is an injectable hydrogel composed of carboxymethyl chitosan and oxidized sodium alginate, with addition of 4-methylumphulone beta-D-glucoside (MUG) and up-converted nanoparticles coated with titanium dioxide (UCNPs@TiO2). The presence of bacteria can be visually detected by monitoring the blue fluorescence of 4-methylumbellione, generated through the reaction between MUG and the pathogen-associated enzyme. The UCNPs@TiO2 photosensitizers were synthesized and demonstrated high antibacterial activity through the generation of reactive oxygen species when exposed to near-infrared irradiation. Meanwhile, a smartphone-based portable detection system equipped with a self-developed Android app was constructed for in situ detection of pathogens in mere seconds, detecting as few as 103 colony-forming unit. Additionally, the dressing was tested in a rat infected wound model and showed good antibacterial activity and pro-healing ability. These results suggest that the proposed intelligent wound dressing has potential for use in the diagnosis and management of wound infections. STATEMENT OF SIGNIFICANCE: An intelligent wound dressing has been prepared for simultaneous in situ detection and elimination of pathogenic bacteria. The presence of bacteria can be visually detected by tracking the blue fluorescence of the dressing. Moreover, a smartphone-based detection system was constructed to detect and diagnose pathogenic bacteria before reaching the infection limit. Meanwhile, the dressing was able to effectively eliminate key pathogenic bacteria on demand through antibacterial photodynamic therapy under NIR irradiation. The proposed intelligent wound dressing enables timely detection and treatment of infectious pathogens at an early stage, which is beneficial for wound management.


Assuntos
Bactérias , Infecção dos Ferimentos , Ratos , Animais , Antibacterianos/farmacologia , Bandagens , Hidrogéis/farmacologia , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/terapia
16.
Environ Sci Ecotechnol ; 21: 100391, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38328510

RESUMO

The trade-off and synergy relationship of ecosystem services is an important topic in the current assessment. The value of each service provided by the ecosystem is substantially affected by human activities, and conversely, its changes will also affect the relevant human decisions. Due to varying trade-offs among ecosystem services and synergies between them that can either increase or decrease, it is difficult to optimize multiple ecosystem services simultaneously, making it a huge challenge for ecosystem management. This study firstly develops a global Gross Ecosystem Product (GEP) accounting framework. It uses remote sensing data with a spatial resolution of 1 km to estimate the ecosystem services of forests, wetlands, grasslands, deserts, and farmlands in 179 major countries in 2018. The results show that the range of global GEP values is USD 112-197 trillion, with an average value of USD 155 trillion (the constant price), and the ratio of GEP to gross domestic product (GDP) is 1.85. The trade-offs and the synergies among different ecosystem services in each continent and income group have been further explored. We found a correspondence between the income levels and the synergy among ecosystem services within each nation. Among specific ecosystem services, there are strong synergies between oxygen release, climate regulation, and carbon sequestration services. A trade-off relationship has been observed between flood regulation and other services, such as water conservation and soil retention services in low-income countries. The results will help clarify the roles and the feedback mechanisms between different stakeholders and provide a scientific basis for optimizing ecosystem management and implementing ecological compensation schemes to enhance human well-being.

17.
IEEE Trans Biomed Circuits Syst ; 18(4): 872-884, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38300779

RESUMO

Intracardiac wireless communication is crucial for the development of multi-chamber leadless cardiac pacemakers (LCP). However, the time-varying characteristics of intracardiac channel pose major challenges. As such, mastering the dynamic conduction properties of the intracardiac channel and modeling the equivalent time-varying channel are imperative for realizing LCP multi-chamber pacing. In this article, we present a limiting volume variational approach based on the electrical properties of cardiac tissues and trends in chamber volume variation. This approach was used to establish a quasi-static and a continuous time-varying equivalent circuit model of an intracardiac channel. An equivalence analysis was conducted on the model, and a discrete time-varying equivalent circuit phantom grounded on the cardiac cycle was subsequently established. Moreover, an ex vivo cardiac experimental platform was developed for verification. Results indicate that in the frequency domain, the congruence between phantom and ex vivo experimental outcomes is as high as 94.3%, affirming the reliability of the equivalent circuit model. In the time domain, the correlation is up to 75.3%, corroborating its effectiveness. The proposed time-varying equivalent circuit model exhibits stable and standardized dynamic attributes, serving as a powerful tool for addressing time-varying challenges and simplifying in vivo or ex vivo experiments.


Assuntos
Modelos Cardiovasculares , Marca-Passo Artificial , Animais , Desenho de Equipamento , Humanos
18.
Neurosci Biobehav Rev ; 161: 105669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599355

RESUMO

The effectiveness of universal preventive approaches in reducing the incidence of affective/psychotic disorders is unclear. We therefore aimed to synthesise the available evidence from randomised controlled trials. For studies reporting change in prevalence, we simulated all possible scenarios for the proportion of individuals with the disorder at baseline and at follow-up to exclude them. We then combined these data with studies directly measuring incidence and conducted random effects meta-analysis with relative risk (RR) to estimate the incidence in the intervention group compared to the control group. Eighteen studies (k=21 samples) were included investigating the universal prevention of depression in 66,625 individuals. No studies were available investigating universal prevention on the incidence of bipolar/psychotic disorders. 63 % of simulated scenarios showed a significant preventive effect on reducing the incidence of depression (k=9 - 19, RR=0.75-0.94, 95 %CIs=0.55-0.87,0.93-1.15, p=0.007-0.246) but did not survive sensitivity analyses. There is some limited evidence for the effectiveness of universal interventions for reducing the incidence of depression but not for bipolar/psychotic disorders.


Assuntos
Transtornos Psicóticos , Humanos , Transtornos Psicóticos/prevenção & controle , Transtornos Psicóticos/epidemiologia , Incidência , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/prevenção & controle , Transtornos do Humor/epidemiologia , Transtornos do Humor/prevenção & controle
19.
Front Endocrinol (Lausanne) ; 14: 1150980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152938

RESUMO

Aims: It has been suggested that the triglyceride-glucose (TyG) index is a novel and reliable surrogate marker of insulin resistance (IR). However, its relationship with the risk of end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) remains uncertain. Accordingly, we sought to examine the relationship between the TyG index and ESRD risk in patients with T2DM and CKD. Methods: From January 2013 to December 2021, 1,936 patients with T2DM and CKD hospitalized at Peking University Third Hospital (Beijing, China) were enrolled into the study. The formula for calculating the TyG index was ln[fasting triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2]. ESRD was defined as an estimated glomerular filtration rate of less than 15 mL/min/1.73 m2 or the commencement of dialysis or renal transplantation. The relationship between the TyG index and ESRD risk was analyzed using Cox proportional hazard regression. Results: 105 (5.42%) participants developed ESRD over a mean follow-up of 41 months. The unadjusted analysis revealed a 1.50-fold (95% confidence interval [CI] 1.17-1.93; P = 0.001) increased risk for ESRD per one unit rise in the TyG index, and the positive association remained stable in the fully adjusted model (hazard ratio, 1.49; 95% CI, 1.12-1.99; P = 0.006). Analysis using restricted cubic spline revealed a significant positive association between the TyG index and ESRD risk. In addition, Kaplan-Meier analysis revealed significant risk stratification with a TyG index cutoff value of 9.5 (P = 0.003). Conclusion: In individuals with T2DM and CKD, a significant and positive association was shown between an elevated TyG index and the risk of ESRD. This conclusion provides evidence for the clinical importance of the TyG index for evaluating renal function decline in individuals with T2DM and CKD.


Assuntos
Diabetes Mellitus Tipo 2 , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Diabetes Mellitus Tipo 2/complicações , Glucose , Fatores de Risco , Triglicerídeos , Glicemia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Falência Renal Crônica/complicações
20.
IEEE J Biomed Health Inform ; 27(5): 2186-2196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271456

RESUMO

Musculoskeletal models play an essential role in ankle rehabilitation research. The majority of the existing models have established the relationship between EMG and joint torque. However, EMG signal acquisition requires higher clinical conditions, such as sensitivity to external circumstances, motion artifacts and electrode position. To solve the nonlinear and time-varying nature of joint movement, a Functional Electrical Stimulation (FES) model was proposed in this study to simulate the whole process of ankle dorsiflexion. The model is combined with muscle contraction dynamics based on Hill model and ankle inverse dynamics to connect FES parameters, torques, and ankle angles. In addition, the extended Kalman filter (EKF) algorithm was applied to identify the unknown parameters of the model. Model validation experiment was performed by acquiring the actual data of healthy volunteers. Results showed that the root mean square error (RMSE) and normalized root mean square error (NRMSE) of this model were 11.93%±0.53% and 1.39°±0.26°, respectively, which means it can effectively predict the output variation of ankle joint angle while changing electrical stimulation parameters. Therefore, the proposed mode is essential for developing closed-loop feedback control of electrical stimulation and has the potential to help patients to conduct rehabilitation training.


Assuntos
Articulação do Tornozelo , Tornozelo , Humanos , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular , Estimulação Elétrica , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA