Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 42449-42463, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087619

RESUMO

The secure key generation and distribution (SKGD) are unprecedentedly important for a modern secure communication system. This paper proposes what we believe to be a novel scheme of high-speed key distribution based on interference spectrum-shift keying with signal mutual modulation in commonly driven chaos synchronization. In this scheme, delay line interferometers (DLI) are utilized to generate two low-correlation interference spectra from commonly driven synchronous chaos, and then a 2 × 2 optical switch can effectively change the relationship between the two interference spectra in post-processing by shifting the states of the switch. The signals then undergo electro-optic nonlinear transformation through a hardware module, which includes a signal mutually modulating module (SMMM) and a dispersion component. This optimization significantly enhances the entropy source rate of synchronized chaos from both legitimate users. Moreover, thanks to the introduction of DLIs and electro-optic nonlinear transformation module, the key space of the proposed scheme is remarkably improved. In comparison to traditional chaotic drive-response architectures, the scheme effectively suppresses residual correlation. A 6.7 Gbit/s key distribution rate with a bit error rate below 3.8 × 10-3 is experimentally demonstrated over a 40 km single-mode fiber (SMF).

2.
Opt Express ; 31(2): 1666-1676, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785197

RESUMO

To guarantee information security from the lowest level of optical networks, it is essential to provide physical layer security in fiber-optic communication systems. However, it is challenging to realize high speed physical secure optical communication based on advanced optical modulation formats and pure commercial hardware components. In this work, we report an experimental demonstration of a high-speed 56 Gb/s PAM4 physical-layer secure optical communication system by employing an electro-optic self-feedback hardware module for temporal self-phase encryption and decryption without consuming any additional encryption channel. An encrypted 56 Gb/s PAM4 confidential signal is successfully decrypted after transmitting over 60 km single-mode fiber. The demonstrated scheme can not only be integrated with existing optical communication networks, but can also be used as a pluggable module, which may provide a promising solution for ultra-high speed physical secure optical communication by combining with advanced multiplexing technology in future.

3.
Opt Express ; 30(13): 23953-23966, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225066

RESUMO

High speed physical secure key distribution in a classical optical fiber channel is unprecedentedly desired for modern secure communication, but it still remains a worldwide technical challenge. In this paper, we propose and experimentally demonstrate a novel high-speed physical secure key distribution scheme based on chaotic optical signal processing and private hardware modules, which employs chaotic self-carrier phase modulation for chaotic bandwidth expansion and time-delayed shift keying of commonly driven synchronized optical chaos for physical layer security. In this scheme, the entropy source rate of synchronized chaos output from two remote response lasers is greatly expanded by chaotic self-carrier delayed nonlinear phase disturbance, which facilitates high speed key extraction from the entropy source with guaranteed randomness. Moreover, a synchronization recovery time of sub-nanosecond is achieved by dynamic keying of the chaotic delay time after chaos synchronization to accelerate the key distribution rate. Based on the proposed scheme, a high physical key distribution rate of 2.1 Gb/s over 40 km is successfully demonstrated in the experiment. The proposed solution provides a promising strategy for future high-speed key distribution based on chaotic optical signal processing and classical fiber channel.

4.
Opt Express ; 30(17): 31209-31219, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242208

RESUMO

Protecting confidential high speed optical signal transmission at the lowest physical layer is a critical challenge for modern fiber-optic communication systems. In this paper, we experimentally demonstrate a novel synchronous privacy enhanced chaotic temporal phase en/decryption scheme for high-speed physical layer secure optical communication. A remote chaos synchronization architecture relying on common source signal driving and private response hardware modules comprising of dispersive components and slave lasers is employed to generate synchronized private chaotic en/decryption signals, and simultaneously suppress residual driving-response correlation for enhancing the security. A proof-of-principle demonstration by secure transmission of a 28 Gb/s on-off-keying modulated confidential signal over 100 km single mode fiber link based on the private chaotic temporal phase en/decryption scheme is successfully achieved. The demonstrated hardware optical en/decryption approach may provide a promising way towards future ultra-high speed physical layer secure optical communication systems.

5.
Opt Lett ; 47(4): 913-916, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167557

RESUMO

Providing physical layer security at the lowest network layer in fiber-optic communication systems is a technical challenge worldwide. Here, we propose and experimentally demonstrate a pure hardware optical encryption scheme based on temporal spreading and self-feedback phase encryption for high-speed and long-distance physical-layer secure optical communication. A record high bit-rate-distance product of 6400 Gb/s km is successfully achieved by the secure transmission of a 32 Gb/s on-off-keying modulated confidential signal over a 200 km optical fiber link. The demonstrated scheme is fully compatible with conventional optical transmission systems and can be operated in a pluggable manner, which may pave a new path to ultra-high-speed physical-layer secure optical communication in the future.

6.
Opt Lett ; 47(19): 5232-5235, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181229

RESUMO

Achieving photonic layer security at the lowest network layer to supplement the upper layer digital cryptography in fiber-optic networks is a constant pursuit but a critical challenge. In this Letter, we propose and experimentally demonstrate a high-speed photonic-layer secure optical communication system based on a novel, to the best of our knowledge, common noise driven synchronous private temporal phase en/decryption scheme, which is capable of supporting high-order modulation formats and enhancing security. A record high bit rate of 56 Gb/s 4-level pulse amplitude modulation (PAM4) confidential signal is successfully encrypted and decrypted by remotely synchronized private noise-like en/decryption signals after secret transmission over 20 km of optical fiber with a bit-error-rate (BER) lower than the hard-decision forward error correction (HD-FEC) limit. The demonstrated scheme may provide a promising way for future ultrahigh-speed photonic-layer secure optical communication.

7.
Opt Lett ; 47(15): 3788-3791, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913315

RESUMO

We propose and experimentally demonstrate a novel, to the best of our knowledge, private correlated random bit generation (CRBG) scheme based on commonly driven induced synchronization of two wideband physical entropy sources, which employs an open-loop distributed feedback laser followed by a hybrid electro-optic nonlinear transformation hardware module for effective bandwidth expansion and privacy enhancement. A Mach-Zehnder interferometer followed by an electro-optic self-feedback phase modulation loop as well as a dispersion element are constructed as a private hardware module to perform post-processing and nonlinear transformation of the synchronized signal. A record high rate of 5.2-Gb/s CRBG is successfully achieved between two synchronized wideband physical entropy sources with an enhanced entropy source rate and hardware key space. The demonstrated scheme may provide a new way for CRBG in future high speed secure communication systems.

8.
Opt Express ; 29(13): 19879-19890, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266089

RESUMO

Since the frequency offset estimation (FOE) must be implemented before the subcarrier de-multiplexing and chromatic dispersion compensation (CDC) for digital subcarrier multiplexing (DSM) signals, traditional FOE algorithms for single carrier transmission is no longer suitable. Here, we propose a hardware-efficient blind FOE solution for the DSM signals by monitoring spectral dips in the frequency domain. With the use of a smoothing filter, the estimation accuracy of FOE can be significantly increased. Moreover, we identify that the proposed FOE method is robust to various transmission impairments, including amplified spontaneous emission (ASE) noise, optical filtering, and fiber nonlinearity. The effective function of the proposed FOE method is numerically and experimentally verified under scenarios of both back-to-back (B2B) and the 2560 km standard single-mode fiber (SSMF) transmission, leading to a FOE error less than 100 MHz with a FFT size of 1024.

9.
Opt Lett ; 46(12): 2824-2827, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129550

RESUMO

The instability of optical phase chaos synchronization between semiconductor lasers under master-slave open-loop configuration is investigated. The phase difference between the master and slave lasers is obtained and analyzed in experiment by heterodyne detection and Hilbert transform, and in simulation by solving the rate equations. The results show that the phase difference only maintains in a short duration time and then jumps to another value. A statistical analysis shows that both duration time and jumping values are random, proving that the phase chaos synchronization is unstable. A theoretical analysis shows that the instability of phase synchronization is caused by the jumping of the external cavity mode in the master laser.

10.
Opt Lett ; 46(13): 3239-3242, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197425

RESUMO

We developed a bending-loss-resistant distributed Brillouin curvature sensor based on an erbium-doped few-mode fiber (Er-FMF) and differential pulse-width pair Brillouin optical time-domain analysis. With Er ion amplification compensating for bending-induced optical loss, radii in the ∼0.3 to 2.02 cm range could be monitored correctly. The corresponding Brillouin frequency shift variations were in the range of 91.7 to 9 MHz, which agrees well with theoretical calculations. The sensitivity of the Er-FMF device increased inversely with the bending radius, with the optimal sensitivity of 292.7 MHz/cm obtained at a radius of 0.3 cm. To the best of our knowledge, this is the smallest radius of curvature detected and highest sensitivity reported to date, indicating potential applications in distributed sharp-bend sensing, such as intelligent robotics and structural health monitoring.

11.
Opt Express ; 28(12): 18507-18515, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680048

RESUMO

We numerically demonstrate the generation of wide-band laser chaos with flat power spectrum in a 2D circular-side hexagonal resonator (CSHR) microlaser subject to long-cavity optical feedback. The bandwidth and flatness of the chaotic power spectrum are investigated under different bias currents and optical feedback rates. Under low bias current, the bandwidth under an optimized optical feedback rate increases obviously as raising bias current and the power spectrum flatten simultaneously. Under high bias current, the optimized bandwidth gradually tends toward stabilization, with corresponding flatness less than 5 dB. We compare the chaotic power spectra with small-signal modulation response (SSR) curves under different bias currents. It can be concluded that wide-band and flat SSR indicates wide-band and flat chaotic power spectrum. This work argues that we can enhance laser chaos by using a laser device with wide-band and flat SSR and simple optical feedback configuration, which is significantly beneficial to synchronization-based applications including chaos communication and key distribution.

12.
Opt Lett ; 45(17): 4762-4765, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870851

RESUMO

We propose and numerically demonstrate a scheme of coherent optical chaos communication using semiconductor lasers for secure transmission of optical quadrature amplitude modulation (QAM) signals. In this scheme, a laser intensity chaos and its delayed duplicate are used to amplitude-quadrature modulate a continuous-wave light to generate a chaotic carrier. High-quality chaotic carrier synchronization between the transmitter and receiver is guaranteed by laser intensity chaos synchronization, avoiding laser phase fluctuation. Decryption is implemented by a 90 deg optical hybrid using the synchronous chaotic carrier as local light. Secure transmission of an optical 40 Gb/s 16QAM signal is demonstrated by using a laser intensity chaos with a bandwidth of 11.7 GHz. The system performances are evaluated by analyzing a bit error ratio with different masking coefficients, signal rates, synchronization coefficients, parameter mismatches, and dispersion compensation. It is believed that this scheme can pave a way for high-speed optical chaos communication.

13.
Nanotechnology ; 31(22): 225206, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32050184

RESUMO

A multiple-layer thin film of Pt/Ga2O3-x/SiC/Pt-based resistive switching is systematically investigated. Excellent bipolar resistive switching behavior is observed with a high resistance switching ratio of OFF/ON up to 103. The current-voltage relations plot implies the Ohmic conductance of the ON state, while the space and interface charge limited the current of the OFF state. The micro mechanism of resistive switching is explained by the formation/rupture of conductive filaments formed out of oxygen vacancies within the Ga2O3-x and SiC region. In particular, these devices exhibit excellent stability. The high OFF/ON resistance ratio can be completely retained for a number of days without degradation.

14.
ACS Appl Mater Interfaces ; 15(3): 4469-4476, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642887

RESUMO

Noninvasive and sensitive thermometry is crucial to human health monitoring and applications in disease diagnosis. Despite recent advances in optical temperature detection, the construction of sensitive wearable temperature sensors remains a considerable challenge. Here, a flexible and biocompatible optical temperature sensor is developed by combining plasmonic semiconductor W18O49 enhanced upconversion emission (UCNPs/WO) with flexible poly(lactic acid) (PLA)-based optical fibers. The UCNPs/WO offers highly thermal-sensitive and obviously enhanced dual-wavelength emissions for ratiometric temperature sensing. The PLA polymer endows the sensor with excellent light-transmitting ability for laser excitation and emission collection and high biocompatibility. The fabricated UCNPs/WO-PLA sensor exhibits stable and rapid temperature response in the range 298-368 K, with a high relative sensitivity of 1.53% K-1 and detection limit as low as ±0.4 K. More importantly, this proposed sensor is demonstrated to possess dual function on real-time detection for physiological thermal changes and heat release, exhibiting great potential in wearable health monitoring and biotherapy applications.

15.
Opt Express ; 19(13): 12248-60, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716462

RESUMO

We compare the performances of the 0/π-phase-shifted SSFBG (0/π-SSFBG) and the ± π/2-phase-shifted SSFBG (± π/2-SSFBG) en/decoders in the three aspects: the security, coding and system performances. In terms of the security performance, we evaluate the security performance by the investigation on the encoded waveform of both encoders. We also propose and demonstrate the code extraction technique for the ± π/2-SSFBG encoder when input pulse has large pulse width. Then, we analyze the coding performance of these two kinds of en/decoders by the calculation of autocorrelation and cross-correlation with sets of 31-chip, 63-chip and 127-chip Gold codes. Furthermore, we propose and demonstrate the hybrid use of both en/decoders. To demonstrate the performance of both en/decoders and the hybrid use in the different systems, we employ four 31-chip 640 Gchip/s 0/π-SSFBG and ± π/2-SSFBG en/decoders in the 4-user 10 Gbps/user on-off keying and differential phase-shift keying OCDMA systems.


Assuntos
Segurança Computacional/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Dispositivos Ópticos , Telecomunicações/instrumentação , Desenho de Equipamento
16.
Opt Express ; 19(4): 3503-12, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369173

RESUMO

We propose and demonstrate a novel bit-by-bit code scrambling technique based on time domain spectral phase encoding/decoding (SPE/SPD) scheme using only a single phase modulator to simultaneously generate and decode the code hopping sequence and DPSK data for secure optical communication application. In the experiment, 2.5-Gb/s DPSK data has been generated, decoded and securely transmitted over 34 km by scrambling five 8-chip, 20-Gchip/s Gold codes with prime-hop patterns. The proposed scheme can rapidly reconfigure the optical code hopping sequence bit-by-bit with the DPSK data, and thus it is very robust to conventional data rate energy detection and DPSK demodulation attack, exhibiting the potential to provide unconditional transmission security and realize even one-time pad.

17.
Opt Lett ; 36(22): 4326-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22089552

RESUMO

We propose and experimentally demonstrate a 40 Gb/s secure optical communication system with on-off-keying (OOK) modulation format by using a time domain spectral phase en/decoding scheme, which employs a highly dispersive element and high-speed phase modulator for introducing significant symbol overlapping for both the encoded and incorrectly decoded noiselike signals to enhance the information security against eavesdropping using a power detector. The influence of dispersion and chip modulation rate on the symbol overlapping of the incorrectly decoded signal has been analytically investigated and experimentally verified. Security enhancement for 40 Gb/s OOK data using fast reconfigurable 40 Gchip/s optical codes with code lengths of up to 1024 has been demonstrated and compared with a 10 Gb/s system.

18.
Opt Lett ; 36(9): 1623-5, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540948

RESUMO

We propose and experimentally demonstrate a time-domain bit-by-bit code-shifting scheme that can rapidly program ultralong, code-length variable optical code by using only a dispersive element and a high-speed phase modulator for improving information security. The proposed scheme operates in the bit overlap regime and could eliminate the vulnerability of extracting the code by analyzing the fine structure of the time-domain spectral phase encoded signal. It is also intrinsically immune to eavesdropping via conventional power detection and differential-phase-shift-keying (DPSK) demodulation attacks. With this scheme, 10 Gbits/s of return-to-zero-DPSK data secured by bit-by-bit code shifting using up to 1024 chip optical code patterns have been transmitted over 49 km error free. The proposed scheme exhibits the potential for high-data-rate secure optical communication and to realize even one time pad.

19.
Light Sci Appl ; 10(1): 172, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34456335

RESUMO

High-speed physical key distribution is diligently pursued for secure communication. In this paper, we propose and experimentally demonstrate a scheme of high-speed key distribution using mode-shift keying chaos synchronization between two multi-longitudinal-mode Fabry-Perot lasers commonly driven by a super-luminescent diode. Legitimate users dynamically select one of the longitudinal modes according to private control codes to achieve mode-shift keying chaos synchronization. The two remote chaotic light waveforms are quantized to generate two raw random bit streams, and then those bits corresponding to chaos synchronization are sifted as shared keys by comparing the control codes. In this method, the transition time, i.e., the chaos synchronization recovery time is determined by the rising time of the control codes rather than the laser transition response time, so the key distribution rate is improved greatly. Our experiment achieved a 0.75-Gbit/s key distribution rate with a bit error rate of 3.8 × 10-3 over 160-km fiber transmission with dispersion compensation. The entropy rate of the laser chaos is evaluated as 16 Gbit/s, which determines the ultimate final key rate together with the key generation ratio. It is therefore believed that the method pays a way for Gbit/s physical key distribution.

20.
Opt Express ; 18(10): 9879-90, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20588838

RESUMO

A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BER<10(-9) has been demonstrated successfully. The proposed scheme has simple configuration and improved flexibility that can significantly improve the data confidentiality for optical code division multiple access (OCDMA) and secure optical communication applications.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Armazenamento e Recuperação da Informação/métodos , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA