Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochimie ; 199: 139-149, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430316

RESUMO

DNA-dependent protein kinase (DNA-PK) is a key player in the NHEJ repair pathway. DNA-PK and its subunits, Ku70, Ku80, and catalytic subunit (DNA-PKcs), also participate in other cellular processes; however, there are still no systemic data on the effect of depletion of Ku70, Ku80 and DNA-PKcs on cell functions in the same cell line. Here, we analyzed transcriptome changes in HEK 293T cells after depletion of each DNA-PK subunit. Depletion of various DNA-PK subunits resulted in dramatic differences in the number of differentially expressed genes: only 7 genes changed more than 2-fold in DNA-PKcs-deficient cells, 29 genes in Ku80-deficient, 219 genes in Ku70-deficient. All DNA-PKcs-dependent genes were stress-related and depended on both Ku70 and Ku80. Two-thirds of Ku80-dependent genes were also differentially expressed in the Ku70-deficient line. Most Ku70-dependent genes were altered exclusively in Ku70-depleted cells, indicating that Ku70 is involved in the regulation of more processes than Ku80. GO enrichment analysis showed the effect of Ku70 knockdown on cell adhesion and matrix organization, protein degradation, cell proliferation, and differentiation. Depletion of Ku70, but not Ku80, provided greater cell motility and disassembly of cell-cell contacts. These data clearly indicate that Ku70 is more functionally important for the cell life than DNA-PKcs and even Ku80.


Assuntos
Antígenos Nucleares , Proteína Quinase Ativada por DNA , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , DNA/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo
2.
PLoS One ; 17(11): e0277819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413541

RESUMO

The epigenetics of bacteria, and bacteria with a reduced genome in particular, is of great interest, but is still poorly understood. Mycoplasma gallisepticum, a representative of the class Mollicutes, is an excellent model of a minimal cell because of its reduced genome size, lack of a cell wall, and primitive cell organization. In this study we investigated DNA modifications of the model object Mycoplasma gallisepticum and their roles. We identified DNA modifications and methylation motifs in M. gallisepticum S6 at the genome level using single molecule real time (SMRT) sequencing. Only the ANCNNNNCCT methylation motif was found in the M. gallisepticum S6 genome. The studied bacteria have one functional system for DNA modifications, the Type I restriction-modification (RM) system, MgaS6I. We characterized its activity, affinity, protection and epigenetic functions. We demonstrated the protective effects of this RM system. A common epigenetic signal for bacteria is the m6A modification we found, which can cause changes in DNA-protein interactions and affect the cell phenotype. Native methylation sites are underrepresented in promoter regions and located only near the -35 box of the promoter, which does not have a significant effect on gene expression in mycoplasmas. To study the epigenetics effect of m6A for genome-reduced bacteria, we constructed a series of M. gallisepticum strains expressing EGFP under promoters with the methylation motifs in their different elements. We demonstrated that m6A modifications of the promoter located only in the -10-box affected gene expression and downregulated the expression of the corresponding gene.


Assuntos
Mycoplasma gallisepticum , Tenericutes , Mycoplasma gallisepticum/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Tenericutes/genética , Metilação de DNA
3.
Data Brief ; 39: 107596, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34849385

RESUMO

DNA-PK is a heterotrimeric complex that consists of Ku70 (XRCC6), Ku80 (XRCC5) and DNA-PKcs (PRKDC) subunits. The complex is a major player in the repair of DNA double strand break (DSB) via the non-homologous end joining (NHEJ) pathway. This process requires all DNA-PK subunits, since Ku70/Ku80 heterodimer firstly binds to DNA ends at DSB and then recruits DNA-PKcs. Recruitment of the DNA-PKcs subunit to DSB leads to phosphorylation events near DSB and recruitment of other NHEJ-related proteins that restore DNA integrity. However, today a lot of evidence demonstrates participation of the DNA-PK components in other cellular processes, e.g. telomere length maintenance, transcription, metabolism regulation, cytosolic DNA sensing, apoptosis, cellular movement and adhesion. It is important to note that not all the subunits of the DNA-PK complex are necessary for these processes, and the largest number of independent functions has been shown for the Ku70/Ku80 heterodimer and especially the Ku70 subunit. To better understand the role of each DNA-PK subunit in the cell life, we have analyzed transcriptome changes in HEK293T cells depleted of Ku70, Ku80 or DNA-PKcs using NGS-sequencing. Here, for the first time, we present the data obtained from the transcriptome analysis.

4.
Biochimie ; 171-172: 110-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32105815

RESUMO

Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.


Assuntos
Autoantígeno Ku/metabolismo , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Data Brief ; 23: 103734, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372401

RESUMO

One of the dysbioses often observed in Crohn's disease (CD) patients is an increased abundance of Escherichia coli (10-100 fold compared to healthy individuals) (Gevers et al., 2014). The data reported is a large-scale proteome profile for E. coli isolates collected from CD patients and healthy individuals. 43 isolates were achieved from 30 CD patients (17 male, 12 female, median age 30) and 19 isolates from 7 healthy individuals (7 male, median age 19). Isolates were cultivated on LB medium at aerobic conditions up to medium log phase. Protein extraction was performed with sodium deoxycholate (DCNa) and urea, alcylation with tris(2-carboxyethyl)phosphine and iodacetamide. Protein trypsinolysis was performed as described in (Matyushkina et al., 2016). Total cell proteomes were analysed by shotgun proteomics with HPLC-MS/MS on a maXis qTOF mass-spectrometer. The data including HPLC-MS/MS raw files and exported Mascot search results was deposited to the PRIDE repository project accession: PXD010920, project https://doi.org/10.6019/PXD010920.

6.
Front Microbiol ; 9: 2827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519231

RESUMO

Prokaryotes are actively studied objects in the scope of genomic regulation. Microbiologists need special tools for complex analysis of data to study and identification of regulatory mechanism in bacteria and archaea. We developed a tool BAC-BROWSER, specifically for visualization and analysis of small prokaryotic genomes. BAC-BROWSER provides tools for different types of analysis to study a wide set of regulatory mechanisms of prokaryotes: -transcriptional regulation by transcription factors (TFs), analysis of TFs, their targets, and binding sites.-other regulatory motifs, promoters, terminators and ribosome binding sites-transcriptional regulation by variation of operon structure, alternative starts or ends of transcription.-non-coding RNAs, antisense RNAs-RNA secondary structure, riboswitches-GC content, GC skew, codon usage BAC-browser incorporated free programs accelerating the verification of obtained results: primer design and oligocalculator, vector visualization, the tool for synthetic gene construction. The program is designed for Windows operating system and freely available for download in http://smdb.rcpcm.org/tools/index.html.

7.
Front Genet ; 9: 569, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519256

RESUMO

Mycoplasma gallisepticum is an intracellular parasite affecting respiratory tract of poultry that belongs to class Mollicutes. M. gallisepticum features numerous variable lipoprotein hemagglutinin genes (vlhA) that play a role in immune escape. The vlhA promoters have a set of distinct properties in comparison to promoters of the other genes. The vlhA promoters carry a variable GAA repeats region at approximately 40 nts upstream of transcription start site. The promoters have been considered active only in the presence of exactly 12 GAA repeats. The mechanisms of vlhA expression regulation and GAA number variation are not described. Here we tried to understand these mechanisms using different computational methods. We conducted a comparative analysis among several M. gallisepticum strains. Nucleotide sequences analysis showed the presence of highly conserved regions flanking repeated trinucleotides that are not linked to GAA number variation. VlhA genes with 12 GAA repeats and their orthologs in 12 M. gallisepticum strains are more conserved than other vlhA genes and have narrower GAA number distribution. We conducted comparative analysis of physicochemical profiles of M. gallisepticum vlhA and sigma-70 promoters. Stress-induced duplex destabilization (SIDD) profiles showed that sigma-70 group is characterized by the common to prokaryotic promoters sharp maxima while vlhA promoters are hardly destabilized with the region between GAA repeats and transcription start site having zero opening probability. Electrostatic potential profiles of vlhA promoters indicate the presence of the distinct patterns that appear to govern initial stages of specific DNA-protein recognition. Open state dynamics profiles of vlhA demonstrate the pattern that might facilitate transcription bubble formation. Obtained data could be the basis for experimental identification of mechanisms of phase variation in M. gallisepticum.

8.
Data Brief ; 10: 264-268, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070539

RESUMO

The genus Mycoplasma relates to Gram-positive bacteria that lack a cell wall and are capable to cause chronic disease in humans and animals. Among the agents of infection and disease in domestic poultry and wild birds, Mycoplasma gallisepticum is the most important mycoplasma species, causing considerable losses in the poultry industry. In the present paper, we provide data on adaptation of M. gallisepticum to the eukaryotic host cells on the genomic level. The major changes were predominantly localized in the VlhA-hemagglutinin genes which are important components of pathogenesis. The ability of mycoplasmas to change dramatically the repertoire of surface antigens and to vary the immunogenicity of these components allows them to remain undetected by the immune system of the host. The data presented in this article are related to the article entitled "Phase Transition of the Bacterium upon Invasion of a Host Cell as a Mechanism of Adaptation: a Mycoplasma gallisepticum Model." (Matyushkina et al., 2016) [1]. Data posted in repository https://www.ncbi.nlm.nih.gov/bioproject/315515. Bioproject ID: PRJNA315515.

9.
Biochimie ; 132: 66-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984202

RESUMO

Bacteria of class Mollicutes (mycoplasmas) feature significant genome reduction which makes them good model organisms for systems biology studies. Previously we demonstrated, that drastic transcriptional response of mycoplasmas to stress results in a very limited response on the level of protein. In this study we used heat stress model of M. gallisepticum and ribosome profiling to elucidate the process of genetic information transfer under stress. We found that under heat stress ribosomes demonstrate selectivity towards mRNA binding. We identified that heat stress response may be divided into two groups on the basis of absolute transcript abundance and fold-change in the translatome. One represents a noise-like response and another is likely an adaptive one. The latter include ClpB chaperone, cell division cluster, homologs of immunoblocking proteins and short ORFs with unknown function. We found that previously identified read-through of terminators contributes to the upregulation of transcripts in the translatome as well. In addition we identified that ribosomes of M. gallisepticum undergo reorganization under the heat stress. The most notable event is decrease of the amount of associated HU protein. In conclusion, only changes of few adaptive transcripts significantly impact translatome, while widespread noise-like transcription plays insignificant role in translation during stress.


Assuntos
Adaptação Fisiológica/genética , Resposta ao Choque Térmico/genética , Mycoplasma gallisepticum/genética , Ribossomos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Mycoplasma gallisepticum/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico , Espectrometria de Massas em Tandem
10.
Front Microbiol ; 7: 1977, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999573

RESUMO

Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum, and Mycoplasma gallisepticum) to perform promoter mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts.

11.
Sci Rep ; 6: 35959, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775027

RESUMO

What strategies do bacteria employ for adaptation to their hosts and are these strategies different for varied hosts? To date, many studies on the interaction of the bacterium and its host have been published. However, global changes in the bacterial cell in the process of invasion and persistence, remain poorly understood. In this study, we demonstrated phase transition of the avian pathogen Mycoplasma gallisepticum upon invasion of the various types of eukaryotic cells (human, chicken, and mouse) which was stable during several passages after isolation of intracellular clones and recultivation in a culture medium. It was shown that this phase transition is manifested in changes at the proteomic, genomic and metabolomic levels. Eukaryotic cells induced similar proteome reorganization of M. gallisepticum during infection, despite different origins of the host cell lines. Proteomic changes affected a broad range of processes including metabolism, translation and oxidative stress response. We determined that the activation of glycerol utilization, overproduction of hydrogen peroxide and the upregulation of the SpxA regulatory protein occurred during intracellular infection. We propose SpxA as an important regulator for the adaptation of M. gallisepticum to an intracellular environment.


Assuntos
Adaptação Biológica , Adaptação Fisiológica , Endocitose , Mycoplasma gallisepticum/fisiologia , Animais , Linhagem Celular , Galinhas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Metaboloma , Camundongos , Proteoma/análise , Inoculações Seriadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA