RESUMO
A Human-health Risk Assessment was performed for an agricultural site in North-East Italy undergone digestate application to (i) check the compliance of digestate land spreading with the Italian and European regulations on contaminated agricultural soils and (ii) evaluate how resulting risk estimations can be influenced by the applied modeling assumptions. The assessment estimated the risk related to adults and children intake of Heavy Metals (HM) contained in crops at concentrations estimated by a soil-plant transfer model based on the substance-specific soil-water partition coefficients. Eight different scenarios were investigated, according to different digestate type (from biowaste and agro-industrial byproducts), digestate application techniques and soil background concentrations. Non-risky situations resulted in all scenarios involving digestate application. The totality of calculated non-carcinogenic Hazard Indexes (HI) and carcinogenic total risk (RTOTC) resulted below 0.02 and 3E10-9, respectively. In contrast with the definition, non-carcinogenic risks were associated with the considered soil background concentrations, with HI s up to 1.7 for child receptors, while carcinogenic risk was calculated below the concern threshold (i.e., RTOTC < 10-5). Accordingly, this study highlighted (i) non-concerning situations related with lawful application of digestates and (ii) the need to improve the modeling of bioavailability to plant of HMs background content of soil.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Agricultura/métodos , Criança , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análiseRESUMO
Digestate from biogas plants managing municipal solid waste needs to be stabilized prior to final utilization or disposal. Based on the concept of urban mining, aged refuse from a closed landfill was used to treat landfill leachate, but nitrogen removal by biological denitrification was limited. The aim of this study was to use a digestate layer in bioreactors containing aged refuse to enhance the biological denitrification capacity of the aged refuse, stabilize digestate, and mitigate the ammonia emissions from digestate leaching with leachate recirculation. Six identical landfill columns filled with 0% (R0), 5% (R5), and 15% (R15) of solid digestate above aged refuse (ratios based on Total Solids) were setup and nitrified leachate was periodically fed and recirculated to the columns. The nitrate removal rate in R5 and R15 was 3.4 and 10 times higher relative to the control (no digestate added). A 31.5-35.9% increase of solid digestate biostability was confirmed by tests performed under both aerobic and anaerobic conditions. The results showed that instead of land use, the solid fraction of digestate could be utilized as an inexpensive functional layer embedded in an old landfill site to enhance the denitrification capacity and achieve digestate stabilization with minimal ammonia leaching from digestate.
RESUMO
Phytotreatment capping in closed landfills is a promising, cost-effective, in situ option for sustainable leachate treatment and might be synergistically coupled with energy crops to produce renewable energy (e.g.: biodiesel or bioethanol). This study proposes to use 0.30â¯m of soil as growing substrate for plants cultivated on the temporary cover of closed landfills. Once the leachate phytotreatment process is no longer required, 0.70â¯m of the same soil would be added to attain the final top cover configuration. This solution would entail saving the costs of excavation and backfilling. However, worsening of the initial soil quality due to potential contaminant transfer from the liquid to the solid matrix must be avoided because EU legislation (such as that in Italy) fixes concentration limits for contaminants in soil. In this research, samples of soil used as substrate in a lab-scale leachate phytotreatment test with sunflowers were analysed to provide chemical characterization before, during, and at the end of the experiment. The results showed that the phytotreatment activity did not increase initial contaminant concentrations. These results are reinforced by those from ecotoxicological bioassays in which Eisenia fetida (earthworms), Lepidium sativum (cress), Folsomia candida (collembola), and Caenorhabditis elegans and Steinernema carpocapsae (nematodes) were used. It was observed that, by the end of the experiment, the substrate soil did not affect the earthworms, collembola and nematode behaviour, or the growth of cress.
Assuntos
Eliminação de Resíduos , Poluentes do Solo , Poluentes Químicos da Água , Produtos Agrícolas , Itália , Solo , Instalações de Eliminação de ResíduosRESUMO
Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos/métodos , Biodegradação AmbientalRESUMO
The application of char from biomass gasification as a filling material in landfill simulation reactors was investigated to evaluate the effect of char on carbon retention and nitrogen leaching, nitrogen denitrification, and waste stabilization. Landfill simulation columns filled with fine fraction of aged refuse (AR) and solid fraction of digestate (SFD) were used, with two char application methods: embedding a char layer between AR and SFD layers and mixing char with the SFD. The experimental results show that char application increased the biodegradable organic matter content as the respiration index (RI4) of the mixture char-SFD increased up to 37.7%, which could enhance the heterotrophic denitrification. Moreover, 12.3% of ammonia leaching was avoid by applying the SFD mixed with char. These results indicate that char from biomass gasification poses a significant enhancement on nitrogen and carbon retention which might increase the denitrification capacity of the SFD in the long run. Although high nitrogen removal rates were achieved (up to 23.1 mg N/kg-TS day), the addition of char from biomass gasification has little effect on the nitrate removal.
Assuntos
Reatores Biológicos , Carbono , Nitrogênio , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , BiomassaRESUMO
The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.
Assuntos
Biocombustíveis , Produtos Agrícolas , Eliminação de Resíduos , Solo , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Custos e Análise de Custo , Itália , Transpiração Vegetal , Eliminação de Resíduos/métodosRESUMO
The use of energy crops in the treatment of wastewaters is of increasing interest, particularly in view of the widespread scarcity of water in many countries and the possibility of obtaining renewable fuels of vegetable origin. The aim of this study was to evaluate the feasibility of landfill leachate phytotreatment using sunflowers, particularly as seeds from this crop are suitable for use in biodiesel production. Two different irrigation systems were tested: vertical flow and horizontal subsurface flow, with or without effluent recirculation. Plants were grown in 130L rectangular tanks placed in a special climatic chamber. Leachate irrigated units were submitted to increasing nitrogen concentrations up to 372mgN/L. Leachate was successfully tested as an alternative fertilizer for plants and was not found to inhibit biomass development. The experiment revealed good removal efficiencies for COD (η>50%) up until flowering, while phosphorous removal invariably exceeded 60%. Nitrogen removal rates decreased over time in all experimental units, particularly in vertical flow tanks. In general, horizontal flow units showed the best performances in terms of contaminant removal capacity; the effluent recirculation procedure did not improve performance. Significant evapo-transpiration was observed, particularly in vertical flow units, promoting removal of up to 80% of the inlet irrigation volume.
Assuntos
Biodegradação Ambiental , Helianthus/metabolismo , Nitrogênio/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Biomassa , Cyperus , Fertilizantes , Humanos , Nitrogênio/química , Fósforo , Poaceae , Polietileno/química , ÁguaRESUMO
Old landfill leachate was treated in lab-scale phytotreatment units using three oleaginous species: sunflower (H), soybean (S) and rapeseed (R). The specific objectives of this study were to identify the effects of plant species combinations with two different soil textures on the reduction of COD, total N (nitrogen) and total P (phosphorous); to identify the correlation between biomass growth and removal efficiency; to assess the potential of oily seeds for the production of biodiesel. The experimental test was carried out using 20L volume pots installed in a greenhouse under different leachate percentages in the feeding and subsequent COD, N and P loads. Significant removal efficiencies were achieved: COD (ɳ>80%), total N (ɳ>70%) and total P (ɳ>95%). Better performances were displayed by the clayey soil. Plants irrigated with leachate, when compared to control units fed only with water and nutrient solution (Hoagland solution), developed a larger plant mass. Sunflower was the best performing species.