Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Mol Evol ; 92(2): 169-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502221

RESUMO

The bacterial strain SECRCQ15T was isolated from seeds of Chenopodium quinoa in Spain. Phylogenetic, chemotaxonomic, and phenotypic analyses, as well as genome similarity indices, support the classification of the strain into a novel species of the genus Ferdinandcohnia, for which we propose the name Ferdinandcohnia quinoae sp. nov. To dig deep into the speciation features of the strain SECRCQ15T, we performed a comparative genomic analysis of the genome of this strain and those of the type strains of species from the genus Ferdinandcohnia. We found several genes related with plant growth-promoting mechanisms within the SECRCQ15T genome. We also found that singletons of F. quinoae SECRCQ15T are mainly related to the use of carbohydrates, which is a common trait of plant-associated bacteria. To further reveal speciation events in this strain, we revealed genes undergoing diversifying selection (e.g., genes encoding ribosomal proteins) and functions likely lost due to pseudogenization. Also, we found that this novel species contains 138 plant-associated gene-cluster functions that are unique within the genus Ferdinandcohnia. These features may explain both the ecological and taxonomical differentiation of this new taxon.


Assuntos
Ácidos Graxos , Plantas , Filogenia , Plantas/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA
2.
Artigo em Inglês | MEDLINE | ID: mdl-37093735

RESUMO

Strain CRRU44T was isolated from the stems of Rubus ulmifolius plants growing in Salamanca (Spain). The phylogenetic analysis of the 16S rRNA gene sequence places this strain within the family Rhizobiaceae showing that it is equidistant to the type species of several genera from this family with similarity values ranging from 91.0 to 96.3 %. Strain CRRU44T formed a divergent lineage which clustered with Endobacterium cereale RZME27T, Neorhizobium galegae HAMBI540T and Pseudorhizobium pelagicum R1-200B4T. The phylogenomic analysis showed that strain CRRU44T was equal to or more distant from the remaining genera of the family Rhizobiaceae than other genera among them. The calculated average nucleotide identity based on blast and average amino acid identity values with respect to the type species of all genera from the family Rhizobiaceae were lower than 78.5 and 76.5 %, respectively, which are the currently cut-off values proposed to differentiate genera within this family. All these results together with those from phenotypic and chemotaxonomic analyses support that strain CRRU44T represents a novel species of a novel genus within the family Rhizobiaceae, for which the name Ferranicluibacter rubi gen. nov., sp. nov. is proposed (type strain CRRU44T=CECT 30117T=LMG 31822T).


Assuntos
Rhizobiaceae , Rubus , Rubus/genética , Ácidos Graxos/química , Análise de Sequência de DNA , Espanha , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases
3.
Microb Ecol ; 81(2): 471-482, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32901388

RESUMO

The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.


Assuntos
Arthrobacter/fisiologia , Besouros/microbiologia , Genoma Bacteriano/genética , Casca de Planta/parasitologia , Animais , Antibiose , Arthrobacter/classificação , Arthrobacter/genética , DNA Bacteriano/genética , Fungos/crescimento & desenvolvimento , Genes Bacterianos/genética , Interações entre Hospedeiro e Microrganismos , Fenótipo , Filogenia , Pinus/parasitologia , Doenças das Plantas/parasitologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Int J Syst Evol Microbiol ; 70(3): 1961-1962, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31971498

RESUMO

A previous 16S rRNA gene sequence comparison had demonstrated that the type strains of Serratia vespertilionis and Serratia ficaria shared 99.5 % sequence similarity. Despite the 56.2 % homology by DNA-DNA hybridization previously found between these strains, the results of an in silico whole-genome sequence comparison and a new DNA-DNA hybridization study have clearly demonstrated that the genomes of the type strain of S. vespertilionis deposited in different Culture Collections (52T=CECT 8595T=DSM 28727T) and the type strain of S. ficaria (culture DSM 4569T), cannot support such a species differentiation. Tests for substrate utilization redone on the deposited cultures of these strains has also shown very few differences between the type strains of both species. Based on these results, and since the name S. ficaria was validly published earlier, S. vespertilionis should be considered as a later heterotypic synonym of S. ficaria, in application of the priority rule. The type strain of the species S. ficaria is strain 4024T=DSM 4569T=NCTC 12148T=ATCC 33105T=CIP 79.23T=ICPB 4050T.


Assuntos
Filogenia , Serratia/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
5.
Int J Syst Evol Microbiol ; 70(10): 5512-5519, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910749

RESUMO

A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).


Assuntos
Agrobacterium/classificação , Filogenia , Raízes de Plantas/microbiologia , Zea mays/microbiologia , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
6.
J Sci Food Agric ; 100(6): 2742-2749, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32003001

RESUMO

BACKGROUND: There is an urgent need for a new sustainable way of satisfying the increasing demand for food worldwide. One of the main challenges is replacing chemical fertilizers with biofertilizers, which include plant root-associated beneficial microorganisms. The present study reports, for the first time, the effects of SCCPVE07 bacterial strain with respect to improving not only plant development, but also the nutritional content and bioactive compounds content of Coriandrum sativum L., one of the most economically important crops, even for plant growth under salinity stress. RESULTS: Innoculated coriander plants (C. sativum L.) showed an increase in potassium, carbon, calcium and iron content. A significant improvement in phenolic compounds contents was also observed. The contents of 5-O-caffeoylquinic acid, cinnamic acid, 4-methoxy-cinnamic acid hexoside, K-3-O rutinoside, Q-3-O-rutinoside, Q-3-O-glucoside and Q-3-O-glucuronide were significantly enhanced. Moreover, an efficient bacterial root colonization and a noted growth promotion were demonstrated. Bacterial genome was sequenced and analysed. Gene coding related to Plant growth promotion (PGP) mechanisms and proteins involved in plant defence from salinity or in the metabolism of phenolic compounds, such as quercetin 2,3-dioxygenase and phenolic acid decarboxylase, were identified. CONCLUSION: The results obtained in the present study show, for the first time, the beneficial effects of the inoculation of a bacterial Bacillus halotolerans biofertilizer on coriander crops with respect to increasing the content in bioactive compounds and plant development. © 2020 Society of Chemical Industry.


Assuntos
Bacillus/crescimento & desenvolvimento , Coriandrum/crescimento & desenvolvimento , Coriandrum/metabolismo , Fenóis/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Coriandrum/microbiologia , Fertilizantes/microbiologia , Phaseolus/microbiologia , Desenvolvimento Vegetal , Nódulos Radiculares de Plantas/microbiologia , Salinidade
7.
Appl Environ Microbiol ; 82(2): 560-9, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546425

RESUMO

Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55(T), which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55(T) include Bryocella elongata SN10(T) (95.4% identity), Acidicapsa ligni WH120(T) (95.2% identity), and Telmatobacter bradus TPB6017(T) (95.0% identity), revealing that strain S55(T) should be classified within the phylum Acidobacteria, subdivision 1. Strain S55(T) is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55(T) corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55(T) = NBRC 111238(T) = CECT 8791(T)). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55(T) also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55(T) being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55(T) in the carbon cycle in the Picea abies coniferous forest.


Assuntos
Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Microbiologia do Solo , Acidobacteria/genética , Biodegradação Ambiental , Biotransformação , Florestas , Dados de Sequência Molecular , Filogenia , Plantas/metabolismo , Plantas/microbiologia
8.
Int J Syst Evol Microbiol ; 65(9): 2852-2858, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25999590

RESUMO

We isolated a strain coded Esc2Am(T) during a study focused on the microbial diversity of adult specimens of the bark beetle Hylesinus fraxini. Its 16S rRNA gene sequence had 99.4% similarity with respect to its closest relative, Pseudomonas rhizosphaerae IH5(T). The analysis of partial sequences of the housekeeping genes rpoB, rpoD and gyrB confirmed that strain Esc2Am(T) formed a cluster with P. rhizosphaerae IH5(T) clearly separated from the remaining species of the genus Pseudomonas. Strain Esc2Am(T) had polar flagella and could grow at temperatures from 4 °C to 30 °C. The respiratory quinone was Q9 and the main fatty acids were C16 : 0, C18 : 1ω7c and/or C18 : 1ω6c in summed feature 8 and C16 : 1ω7c and/or C16 : 1ω6c in summed feature 3. DNA-DNA hybridization results showed 51% relatedness with respect to P. rhizosphaerae IH5(T). Oxidase, catalase and urease-positive, the arginine dihydrolase system was present but nitrate reduction and ß-galactosidase production were negative. Aesculin hydrolysis was positive. Based on the results from the genotypic, phenotypic and chemotaxonomic analyses, we propose the classification of strain Esc2Am(T) as representing a novel species of the genus Pseudomonas, for which we propose the name Pseudomonas coleopterorum sp. nov. The type strain is Esc2Am(T) ( = LMG 28558(T)= CECT 8695(T)).


Assuntos
Besouros/microbiologia , Filogenia , Pseudomonas/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Celulase , República Tcheca , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Int J Syst Evol Microbiol ; 64(Pt 9): 3028-3033, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928428

RESUMO

A bacterial strain designated RLAHU15(T) was isolated from root nodules of Lupinus albus in Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Paenibacillus, with its closest relatives being Paenibacillus catalpae D75(T), Paenibacillus glycanilyticus DS-1(T), Paenibacillus endophyticus PECAE04(T) and Paenibacillus xinjiangensis B538(T) with 98.8 %, 98.9 %, 97.4 % and 97.4 % similarity, respectively. DNA-DNA hybridization studies showed values lower than 45 % between the strain RLAHU15(T) and any of these species. The isolate was a Gram-stain positive, motile and sporulating rod. Catalase activity was weak and oxidase activity was positive. Casein and starch were hydrolysed but gelatin was not. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C15 : 0 and iso-C16 : 0 were the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and an unidentified lipid. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 54.4 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RLAHU15(T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus lupini sp. nov. is proposed. The type strain is RLAHU15(T) ( = LMG 27296(T) = CECT 8235(T)).


Assuntos
Lupinus/microbiologia , Paenibacillus/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Sci Rep ; 14(1): 13388, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862607

RESUMO

(1) Background: Endophytic bacteria represent an important component of plant wellness. They have been widely studied for their involvement in plant development and enhancement of stress tolerance. In this work, the endophytic communities of roots, stems, and leaves of blackberry (Rubus ulmifolius Schott) were studied in three different niches: natural, riverside, and human-impacted niches. (2) Results: The microbiome composition revealed that Sphingomonadaceae was the most abundant family in all samples, accounting for 9.4-45.8%. In contrast, other families seem to be linked to a specific tissue or niche. Families Microbacteriaceae and Hymenobacteraceae increased their presence in stem and leaf samples, while Burkholderiaceae abundance was important in riverside samples. Alpha and beta diversity analyses showed that root samples were the most diverse, and they gathered together in the same cluster, apart from the rest of the samples. (3) Conclusions: The analysis of the microbiome of R. ulmifolius plants revealed that the composition was essentially the same in different niches; the differences were primarily influenced by plant tissue factors with a core genome dominated by Sphingomonadaceae. Additionally, it was observed that R. ulmifolius can select its own microbiome, and this remains constant in all tissues evaluated regardless the niche of sampling.


Assuntos
Bactérias , Endófitos , Microbiota , Folhas de Planta , Rubus , Endófitos/genética , Rubus/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia
11.
Int J Syst Evol Microbiol ; 63(Pt 3): 821-826, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22611197

RESUMO

A strain, PEPV15(T), was isolated from a nodule on Phaseolus vulgaris grown in soil in northern Spain. Phylogenetic analyses of 16S rRNA and atpD genes showed that this strain belongs to the genus Phyllobacterium. The most closely related species were, in both cases, Phyllobacterium brassicacearum, Phyllobacterium bourgognense and Phyllobacterium trifolii, the type strains of which gave sequence similarities of 98.9, 98.6 and 98.4 %, respectively, in the 16S rRNA gene and 88.1, 87.5 and 88.7 %, respectively, in the atpD gene. PEPV15(T) contained Q-10 as the major quinone (88 %) and low amounts of Q-9 (12 %). It differed from its closest relatives in its growth in diverse culture conditions and in the assimilation of several carbon sources. The strain was not able to produce nodules in Phaseolus vulgaris. The results of DNA-DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain represents a novel species of the genus Phyllobacterium for which the name Phyllobacterium endophyticum sp. nov. is proposed; the type strain is PEPV15(T) ( = LMG 26470(T) = CECT 7949(T)). An emended description of the genus Phyllobacterium is also provided.


Assuntos
Phaseolus/microbiologia , Phyllobacteriaceae/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
12.
Environ Microbiome ; 18(1): 64, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481564

RESUMO

BACKGROUND: Plant-associated microbial communities play important roles in host nutrition, development and defence. In particular, the microbes living within internal plant tissues can affect plant metabolism in a more intimate way. Understanding the factors that shape plant microbial composition and discovering enriched microbes within endophytic compartments would thus be valuable to gain knowledge on potential plant-microbial coevolutions. However, these interactions are usually studied through reductionist approaches (in vitro models or crop controlled systems). Here, we investigate these ecological factors in wild forest niches using proximally located plants from two distant taxa (blueberry and blackberry) as a model. RESULTS: Although the microbial communities were quite similar in both plants, we found that sampling site had a high influence on them; specifically, its impact on the rhizosphere communities was higher than that on the roots. Plant species and sample type (root vs. rhizosphere) affected the bacterial communities more than the fungal communities. For instance, Xanthobacteraceae and Helotiales taxa were more enriched in roots, while the abundance of Gemmatimonadetes was higher in rhizospheres. Acidobacteria abundance within the endosphere of blueberry was similar to that in soil. Several taxa were significantly associated with either blackberry or blueberry samples regardless of the sampling site. For instance, we found a significant endospheric enrichment of Nevskia in blueberry and of Sphingobium, Novosphingobium and Steroidobacter in blackberry. CONCLUSIONS: There are selective enrichment and exclusion processes in the roots of plants that shapes a differential composition between plant species and sample types (root endosphere-rhizosphere). The special enrichment of some microbial taxa in each plant species might suggest the presence of ancient selection and/or speciation processes and might imply specific symbiosis. The selection of fungi by the host is more pronounced when considering the fungal trait rather than the taxonomy. This work helps to understand plant-microbial interactions in natural ecosystems and the microbiome features of plants.

13.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37370225

RESUMO

The European spruce bark beetle, Ips typographus, is a serious pest of spruce forests in Europe, and its invasion and development inside spruce tissues are facilitated by microorganisms. We investigated the core gut bacterial and fungal microbiomes of I. typographus throughout its life cycle in spring and summer generations. We used cultivation techniques and molecular identification in combination with DNA and RNA metabarcoding. Our results revealed that communities differ throughout their life cycle and across generations in proportion of dominantly associated microbes, rather than changes in species composition. The bacteriome consisted mostly of the phylum Gammaproteobacteria, with the most common orders and genera being Enterobacteriales (Erwinia and Serratia), Pseudomonadales (Pseudomonas), and Xanthomonadales. The fungal microbiome was dominated by yeasts (Saccharomycetes-Wickerhamomyces, Kuraishia, and Nakazawaea), followed by Sordariomycetes (Ophiostoma bicolor and Endoconidiophora polonica). We did not observe any structure ensuring long-term persistence of microbiota on any part of the gut epithelium, suggesting that microbial cells are more likely to pass through the beetle's gut with chyme. The most abundant taxa in the beetle's gut were also identified as dominant in intact spruce phloem. Therefore, we propose that these taxa are acquired from the environment rather than specifically vectored between generations.


Assuntos
Besouros , Microbioma Gastrointestinal , Picea , Gorgulhos , Animais , Besouros/microbiologia , Casca de Planta , Estações do Ano , Gorgulhos/microbiologia , Estágios do Ciclo de Vida , Picea/microbiologia
14.
Environ Microbiome ; 18(1): 53, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296446

RESUMO

BACKGROUND: Ips typographus (European spruce bark beetle) is the most destructive pest of spruce forests in Europe. As for other animals, it has been proposed that the microbiome plays important roles in the biology of bark beetles. About the bacteriome, there still are many uncertainties regarding the taxonomical composition, insect-bacteriome interactions, and their potential roles in the beetle ecology. Here, we aim to deep into the ecological functions and taxonomical composition of I. typographus associated bacteria. RESULTS: We assessed the metabolic potential of a collection of isolates obtained from different life stages of I. typographus beetles. All strains showed the capacity to hydrolyse one or more complex polysaccharides into simpler molecules, which may provide an additional carbon source to its host. Also, 83.9% of the strains isolated showed antagonistic effect against one or more entomopathogenic fungi, which could assist the beetle in its fight against this pathogenic threat. Using culture-dependent and -independent techniques, we present a taxonomical analysis of the bacteriome associated with the I. typographus beetle during its different life stages. We have observed an evolution of its bacteriome, which is diverse at the larval phase, substantially diminished in pupae, greater in the teneral adult phase, and similar to that of the larval stage in mature adults. Our results suggest that taxa belonging to the Erwiniaceae family, and the Pseudoxanthomonas and Pseudomonas genera, as well as an undescribed genus within the Enterobactereaceae family, are part of the core microbiome and may perform vital roles in maintaining beetle fitness. CONCLUSION: Our results indicate that isolates within the bacteriome of I. typographus beetle have the metabolic potential to increase beetle fitness by proving additional and assimilable carbon sources for the beetle, and by antagonizing fungi entomopathogens. Furthermore, we observed that isolates from adult beetles are more likely to have these capacities but those obtained from larvae showed strongest antifungal activity. Our taxonomical analysis showed that Erwinia typographi, Pseudomonas bohemica, and Pseudomonas typographi species along with Pseudoxanthomonas genus, and putative new taxa belonging to the Erwiniaceae and Enterobacterales group are repeatedly present within the bacteriome of I. typographus beetles, indicating that these species might be part of the core microbiome. In addition to Pseudomonas and Erwinia group, Staphylococcus, Acinetobacter, Curtobacterium, Streptomyces, and Bacillus genera seem to also have interesting metabolic capacities but are present in a lower frequency. Future studies involving bacterial-insect interactions or analysing other potential roles would provide more insights into the bacteriome capacity to be beneficial to the beetle.

15.
Curr Biol ; 33(23): R1246-R1261, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052178

RESUMO

Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.


Assuntos
Mudança Climática , Produtos Agrícolas , Melhoramento Vegetal , Agricultura , Produção Agrícola
16.
Microbiol Spectr ; 10(6): e0237022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354324

RESUMO

Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria have evolved to occupy a plethora of different ecological niches, including living hosts, such as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their encoded functions remain unknown. Here, we describe a comparative genomic study of 3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains isolated from diverse environments. We detected functional divergence of Pseudomonas that depends on the niche. Each group of strains from a certain environment harbored a distinctive set of metabolic pathways or functions. The horizontal transfer of genes, which mainly proceeded between closely related taxa, was dependent on the isolation source. Finally, we detected thousands of undescribed proteins and functions associated with each Pseudomonas lifestyle. This research represents an effort to reveal the mechanisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will enable clinical, ecological, and biotechnological advances. IMPORTANCE Microbes play important roles in the health of living beings and in the environment. The knowledge of these functions may be useful for the development of new clinical and biotechnological applications and the restoration and preservation of natural ecosystems. However, most mechanisms implicated in the interaction of microbes with the environment remain poorly understood; thus, this field of research is very important. Here, we try to understand the mechanisms that facilitate the differential adaptation of Pseudomonas-a large and ubiquitous bacterial genus-to the environment. We analyzed more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be related with their coevolution with different hosts (animals, plants, or fungi) and environments. Our results revealed that thousands of genes and genetic features are associated with each niche. Our data may be useful to develop new technical and theoretical advances in the fields of ecology, health, and industry.


Assuntos
Ecossistema , Pseudomonas , Animais , Filogenia , Pseudomonas/genética , Genômica , Adaptação Fisiológica/genética
17.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35195510

RESUMO

Microbes host a huge variety of biosynthetic gene clusters that produce an immeasurable array of secondary metabolites with many different biological activities such as antimicrobial, anticarcinogenic and antiviral. Despite the complex task of isolating and characterizing novel natural products, microbial genomic strategies can be useful for carrying out these types of studies. However, although genomic-based research on secondary metabolism is on the increase, there is still a lack of reports focusing specifically on the genus Pseudomonas. In this work, we aimed (i) to unveil the main biosynthetic systems related to secondary metabolism in Pseudomonas type strains, (ii) to study the evolutionary processes that drive the diversification of their coding regions and (iii) to select Pseudomonas strains showing promising results in the search for useful natural products. We performed a comparative genomic study on 194 Pseudomonas species, paying special attention to the evolution and distribution of different classes of biosynthetic gene clusters and the coding features of antimicrobial peptides. Using EvoMining, a bioinformatic approach for studying evolutionary processes related to secondary metabolism, we sought to decipher the protein expansion of enzymes related to the lipid metabolism, which may have evolved toward the biosynthesis of novel secondary metabolites in Pseudomonas. The types of metabolites encoded in Pseudomonas type strains were predominantly non-ribosomal peptide synthetases, bacteriocins, N-acetylglutaminylglutamine amides and ß-lactones. Also, the evolution of genes related to secondary metabolites was found to coincide with Pseudomonas species diversification. Interestingly, only a few Pseudomonas species encode polyketide synthases, which are related to the lipid metabolism broadly distributed among bacteria. Thus, our EvoMining-based search may help to discover new types of secondary metabolite gene clusters in which lipid-related enzymes are involved. This work provides information about uncharacterized metabolites produced by Pseudomonas type strains, whose gene clusters have evolved in a species-specific way. Our results provide novel insight into the secondary metabolism of Pseudomonas and will serve as a basis for the prioritization of the isolated strains. This article contains data hosted by Microreact.


Assuntos
Produtos Biológicos , Pseudomonas , Produtos Biológicos/metabolismo , Genômica , Família Multigênica , Filogenia , Pseudomonas/genética
18.
Biology (Basel) ; 10(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669823

RESUMO

Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe-host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe-host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle's life cycle.

19.
Biology (Basel) ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440014

RESUMO

Pseudomonas is a large and diverse genus broadly distributed in nature. Its species play relevant roles in the biology of earth and living beings. Because of its ubiquity, the number of new species is continuously increasing although its taxonomic organization remains quite difficult to unravel. Nowadays the use of genomics is routinely employed for the analysis of bacterial systematics. In this work, we aimed to investigate the classification of species of the genus Pseudomonas on the basis of the analyses of the type strains whose genomes are currently available. Based on these analyses, we propose the creation of three new genera (Denitrificimonas gen nov. comb. nov., Neopseudomonas gen nov. comb. nov. and Parapseudomonas gen nov. comb. nov) to encompass several species currently included within the genus Pseudomonas and the reclassification of several species of this genus in already described taxa.

20.
Foods ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671987

RESUMO

Today there is an urgent need to find new ways to satisfy the current and growing food demand and to maintain crop protection and food safety. One of the most promising changes is the replacement of chemical fertilizers with biofertilizers, which include plant root-associated beneficial bacteria. This work describes and shows the use of B. halotolerans SCCPVE07 and R. laguerreae PEPV40 strains as efficient biofertilizers for escarole crops, horticultural species that are widely cultivated. An in silico genome study was performed where coding genes related to plant growth promoting (PGP) mechanisms or different enzymes implicated in the metabolism of phenolic compounds were identified. An efficient bacterial root colonization process was also analyzed through fluorescence microscopy. SCCPVE07 and PEPV40 promote plant development under normal conditions and saline stress. Moreover, inoculated escarole plants showed not only an increase in potassium, iron and magnesium content but also a significant improvement in protocatechuic acid, caffeic acid or kaempferol 3-O-glucuronide plant content. Our results show for the first time the beneficial effects in plant development and the food quality of escarole crops and highlight a potential and hopeful change in the current agricultural system even under saline stress, one of the major non-biological stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA