RESUMO
A novel synthesis of indanes and dihydronaphtalenes based on the intramolecular insertion into C(sp3 )-H bonds of gold(I) carbenes generated by retro-Buchner reaction (decarbenation) has been developed. Deuterium-labeling and kinetic isotope effect experiments, DFT calculations, and generation of the proposed carbene intermediate from a well-characterized gold(I) carbenoid support the involvement of a three-center concerted mechanism for the C(sp3 )-H functionalization process.
RESUMO
Mesityl gold(I) carbenes lacking heteroatom stabilization or shielding ancillary ligands have been generated and spectroscopically characterized from chloro(mesityl)methylgold(I) carbenoids bearing JohnPhos-type ligands by chloride abstraction with GaCl3 . The aryl carbenes react with PPh3 and alkenes to give stable phosphonium ylides and cyclopropanes, respectively. Oxidation with pyridine N-oxide and intermolecular C-H insertion to cyclohexane have also been observed. In the absence of nucleophiles, a bimolecular reaction, similar to that observed for other metal carbenes, leads to a symmetrical alkene.
RESUMO
The enantioselective intermolecular gold(I)-catalyzed [2+2] cycloaddition of terminal alkynes and alkenes has been achieved using non-C2-chiral Josiphos digold(I) complexes as catalysts, by the formation of the monocationic complex. This new approach has been applied to the enantioselective total synthesis of rumphellaone A.
Assuntos
Ciclobutanos/síntese química , Ouro/química , Sesterterpenos/síntese química , Catálise , Reação de Cicloadição , Ciclobutanos/química , Estrutura Molecular , Sesterterpenos/química , EstereoisomerismoRESUMO
Chloromethylgold(I) complexes of phosphine, phosphite, and N-heterocyclic carbene ligands are easily synthesized by reaction of trimethylsilyldiazomethane with the corresponding gold chloride precursors. Activation of these gold(I) carbenoids with a variety of chloride scavengers promotes reactivity typical of metallocarbenes in solution, namely homocoupling to ethylene, olefin cyclopropanation, and Buchner ring expansion of benzene.
RESUMO
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C-H metalation ortho to the strongly electron-withdrawing nitro group.