Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116614, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901168

RESUMO

A heavily impacted river basin (Caudal River, NW Spain) by Hg and Cu mining activities, abandoned decades ago, was used to evaluate the environmental quality of their river sediments. The obtained results compared with reference values established by the US EPA and the Canadian Council of Ministers of the Environment for river sediments, have shown that the main elements of environmental concern are arsenic (As), mercury (Hg) and, to a lesser extent, copper (Cu), which reach concentrations up to 1080, 80 and 54 mg kg-1, respectively. To understand the role that river sediments play in terms of risk to ecosystem health, a comparison has been made between the total content of metal(oid)s in the sediments and the bioavailable contents of the same elements in pore water, passive DGT (Diffusive Gradients in Thin films) samplers and the sediment extractant using acetic acid. A good correlation between the As and Cu contents in the DGTs and the pore water was found, resulting in a transfer from the pore water to the DGT of at least 47 % of the Cu and more than 75 % of the As when the concentrations were low, with a deployment time of 4 days. When As and Cu concentrations were higher, their transfer was not so high (above 23.6 % for As and 19.3 % for Cu). The transfer of Hg from the pore water to the DGT was practically nil and does not seem to depend on the content of this metal. The fraction extracted with acetic acid, conventionally accepted as bioavailable, was clearly lower than that captured by DGTs for As and Cu (≤5 % and ≤8.5 % of the total amount, respectively), while it was similar for Hg (0.2 %).


Assuntos
Arsênio , Cobre , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Espanha , Mercúrio/análise , Medição de Risco , Arsênio/análise , Cobre/análise , Mineração , Disponibilidade Biológica , Metais/análise
2.
Sci Total Environ ; 576: 59-69, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780100

RESUMO

Abandoned and flooded mine networks provide underground reservoirs of mine water that can be used as a renewable geothermal energy source. A complete hydrochemical characterization of mine water is required to optimally design the geothermal installation, understand the hydraulic behavior of the water in the reservoir and prevent undesired effects such as pipe clogging via mineral precipitation. Water pumped from the Barredo-Figaredo mining reservoir (Asturias, NW Spain), which is currently exploited for geothermal use, has been studied and compared to water from a separate, nearby mountain mine and a river that receives mine water discharge and partially infiltrates into the mine workings. Although the hydrochemistry was altered during the flooding process, the deep mine waters are currently near neutral, net alkaline, high metal waters of Na-HCO3 type. Isotopic values suggest that mine waters are closely related to modern meteoric water, and likely correspond to rapid infiltration. Suspended and dissolved solids, and particularly iron content, of mine water results in some scaling and partial clogging of heat exchangers, but water temperature is stable (22°C) and increases with depth, so, considering the available flow (>100Ls-1), the Barredo-Figaredo mining reservoir represents a sustainable, long-term resource for geothermal use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA