Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(21): e202304140, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38323731

RESUMO

The masked transition-metal frustrated Lewis pairs [Cp*M(κ3N,N',N''-L)][SbF6] (Cp*=η5-C5Me5; M=Ir, 1, Rh, 2; HL=pyridinyl-amidine ligand) reversibly activate H2 under mild conditions rendering the hydrido derivatives [Cp*MH(κ2N,N'-HL)][SbF6] observed as a mixture of the E and Z isomers at the amidine C=N bond (M=Ir, 3Z, 3E; M=Rh, 4Z, 4E). DFT calculations indicate that the formation of the E isomers follows a Grotthuss type mechanism in the presence of water. A mixture of Rh(I) isomers of formula [(Cp*H)Rh(κ2N,N'-HL)][SbF6] (5 a-d) is obtained by reductive elimination of Cp*H from 4. The formation of 5 a-d was elucidated by means of DFT calculations. Finally, when 2 reacts with D2, the Cp* and Cp*H ligands of the resulting rhodium complexes 4 and 5, respectively, are deuterated as a result of a reversible hydrogen abstraction from the Cp* ligand and D2 activation at rhodium.

2.
Chemistry ; 30(10): e202303935, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38031971

RESUMO

The unique dynamic configuration of an enantioselective chiral-at-metal catalyst based on Rh(III) and a non-chiral tetradentate ligand is described and resolved. At room temperature, the catalyst undergoes a dynamic configuration process leading to the formation of two interconvertible metal-stereoisomers, remarkably without racemization. Density functional theory (DFT) calculations indicate that this metal-isomerization proceeds via a concerted transition state, which features a trigonal bipyramidal geometry stabilized by the tetradentate ligand. Furthermore, the resolved enantiopure complex shows high catalytic enantioinduction in the Friedel-Crafts reaction, achieving enantiomeric ratios as high as 99 : 1.

3.
J Org Chem ; 87(17): 11433-11442, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35980822

RESUMO

Photosensitized thymine<>thymine (Thy<>Thy) formation and repair can be mediated by carbazole (Cbz). The former occurs from the Cbz triplet excited state via energy transfer, while the latter takes place from the singlet excited state via electron transfer. Here, fundamental insight is provided into the role of the topology and excited state multiplicity, as factors governing the balance between both processes. This has been achieved upon designing and synthesizing different isomers of trifunctional systems containing one Cbz and two Thy units covalently linked to the rigid skeleton of the natural deoxycholic acid. The results shown here prove that the Cbz photosensitized dimerization is not counterbalanced by repair when the latter, instead of operating through-space, has to proceed through-bond.


Assuntos
Carbazóis , Timina , Carbazóis/química , Dimerização , Transferência de Energia , Timina/química
4.
Inorg Chem ; 61(18): 7120-7129, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35476902

RESUMO

Reaction of an amido pincer complex [(CNC)*Rh(CO)] (1) (CNC* is the deprotonated form of CNC) with carbon dioxide gave a neutral complex [(CNC-CO2)Mes*Rh(CO)] (2), which is the result of a C-C bond-forming reaction between the deprotonated arm of the CNC* ligand and CO2. The molecular structure of 2 showed a zwitterionic complex, where the CO2 moiety is covalently connected to the former ═CH arm of the CNC* pincer ligand. The unusual structure of 1 allowed us to explore the reactivity of the CO2 moiety with selected primary amines RNH2 (benzylamine and ammonia), which afforded cationic complexes [(CNC)MesRh(CO)][HRNC(O)O] (R = Bz (3), H (4)). Compounds 3 and 4 are the result of a C-N coupling between the incoming amine and the CO2 fragment covalently connected to the pincer ligand in 2, a process that involves protonation of the "CH-CO2" fragment in 2 from the respective amines. Once revealed the nucleophilic character of the ═CH fragment in 1, we explored its reactivity with alkynes, a study that enlightened a novel reactivity trend in alkyne activation. Reaction of 1 with terminal alkynes RC≡CH (R = Ph, 2-py, 4-C6H4-CF3) yielded neutral complexes [(CNC-CH═CHR)Mes*Rh(CO)] (R = Ph (5), 2-py (6), 4-C6H4-CF3 (7)) in good yields. Deuterium labeling experiments with PhC≡CD confirmed that complex 5 is the product of a formal insertion of the alkyne into the C(sp2)-H bond of the deprotonated arm in 1. This structural proposal was further confirmed by the X-ray molecular structure of phenyl complex 5, which showed the alkyne covalently linked to the pincer ligand. Besides, this novel transformation was analyzed by DFT methods and showed a metal-ligand cooperative mechanism, based on the initial electrophilic attack of the alkyne to the ═CH arm of the CNCMes* ligand (making a new C-C bond) followed by the action of a protic base (HN(SiMe3)2), which is able to perform a proton rearrangement that leads to the final product 5.

5.
Inorg Chem ; 61(50): 20216-20221, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36472385

RESUMO

The catalytic system [Ir(CF3CO2)(κ2-NSiMe)2] [1; NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl]/B(C6F5)3 promotes the selective reduction of CO2 with tertiary silanes to the corresponding bis(silyl)acetal. Stoichiometric and catalytic studies evidenced that species [Ir(CF3COO-B(C6F5)3)(κ2-NSiMe)2] (3), [Ir(κ2-NSiMe)2][HB(C6F5)3] (4), and [Ir(HCOO-B(C6F5)3)(κ2-NSiMe)2] (5) are intermediates of the catalytic process. The structure of 3 has been determined by X-ray diffraction methods. Theoretical calculations show that the rate-limiting step for the 1/B(C6F5)3-catalyzed hydrosilylation of CO2 to bis(silyl)acetal is a boron-promoted Si-H bond cleavage via an iridium silylacetal borane adduct.

6.
Inorg Chem ; 61(41): 16282-16294, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194856

RESUMO

The reaction of [IrH(Cl)(κ2-NSitBu2)(coe)] (1) with 1 equiv of PCy3 (or PHtBu2) gives the species [IrH(Cl)(κ2-NSitBu2)(L)] (L = PCy3, 2a; PHtBu2, 2b), which reacts with 1 equiv of AgOTf to afford [IrH(OTf)(κ2-NSitBu2)(L)] (L = PCy3, 3a and PHtBu2, 3b). Complexes 2a, 2b, 3a, and 3b have been characterized by means of NMR spectroscopy and HR-MS. The solid-state structures of complexes 2a, 2b, and 3a have been determined by X-ray diffraction studies. The reversible coordination of water to 3a, 3b, and 4 to afford the corresponding adduct [IrH(OTf)(κ2-NSitBu2)(L)(H2O)] (L = PCy3, 3a-H2O; PHtBu2, 3b-H2O; coe, 4-H2O) has been demonstrated spectroscopically by NMR studies. The structure of complexes 3b-H2O and 4-H2O have been determined by X-ray diffraction studies. Computational analyses of the interaction between neutral [NSitBu2]• and [Ir(H)L(X)]• fragments in Ir-NSitBu2 species confirm the electron-sharing nature of the Ir-Si bond and the significant role of electrostatics in the interaction between the transition metal fragment and the κ2-NSitBu2 ligand. The activity of Ir-(κ2-NSitBu2) species as catalysts for the hydrolysis of HSiMe(OSiMe3)2 depends on the nature of the ancillary ligands. Thus, while the triflate derivatives are active, the related chloride species show no activity. The best catalytic performance has been obtained when using complexes 3a, with triflate and PCy3 ligands, as a catalyst precursor, which allows the selective obtention of the corresponding silanol.

7.
Inorg Chem ; 61(33): 13149-13164, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35948430

RESUMO

Reaction of the dimers [(Cp*MCl)2(µ-Cl)2] (Cp* = η5-C5Me5) with Ph2PCH2CH2NC(NH(p-Tolyl))2 (H2L) in the presence of NaSbF6 affords the chlorido complexes [Cp*MCl(κ2N,P-H2L)][SbF6] (M = Rh, 1; Ir, 2). Upon treatment with aqueous NaOH, solutions of 1 and 2 yield the corresponding complexes [Cp*M(κ3N,N',P-HL)][SbF6] (M = Rh, 3; Ir, 4) in which the ligand HL presents a fac κ3N,N',P coordination mode. Treatment of THF solutions of complexes 3 and 4 with hydrogen gas, at room temperature, results in the formation of the metal hydrido-complexes [Cp*MH(κ2N,P-H2L)][SbF6] (M = Rh, 5; Ir, 6) in which the N(p-Tolyl) group has been protonated. Complexes 3 and 4 react with deuterated water in a reversible fashion resulting in the gradual deuteration of the Cp* group. Heating at 383 K THF/H2O solutions of the complexes 3 and 4 affords the orthometalated complexes [Cp*M(κ3C,N,P-H2L-H)][SbF6] [M = Rh, 7; Ir, 8, H2L-H = Ph2PCH2CH2NC(NH(p-Tolyl))(NH(4-C6H3Me))], respectively. At 333 K, complexes 3 and 4 react in THF with methanol, primary alcohols, or 2-propanol giving the metal-hydrido complexes 5 and 6, respectively. The reaction involves the acceptorless dehydrogenation of the alcohols at a relatively low temperature, without the assistance of an external base. The new complexes have been characterized by the usual analytical and spectroscopic methods including the X-ray diffraction determination of the crystal structures of complexes 1-5, 7, and 8. Notably, the chlorido complexes 1 and 2 crystallize both as enantiopure conglomerates and as racemates. Reaction mechanisms are proposed based on stoichiometric reactions, nuclear magnetic resonance studies, and X-ray crystallography as well as density functional theory calculations.

8.
Inorg Chem ; 60(23): 18521-18528, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34812617

RESUMO

Ortho-closo or ortho-nido-carborane-diphosphanes have been selected to prepare the heteroleptic cationic or neutral [Cu(N^N){(PPh2)2C2B10H10}]PF6 (1) and [Cu(N^N){(PPh2)2C2B9H10}] (2) [N^N = 2-(4-thiazolyl)benzimidazole], respectively. Complexes 1 and 2 display very different emissive behavior. Neutral complex 2 exhibits TADF (time activated delayed fluorescence) which has been studied both as powder and PMMA composite with similar ΔE(S1 - T1), τ(T1), and τ(S1) in both phases. Cationic complex 1 displays a much lower quantum yield than 2 and does not show TADF, but it exhibits a significant thermochromic luminescence, and its emission is very dependent on the medium. Theoretical studies show that metal-ligand (M-diphosphane) to ligand (L', diimine) transitions, MLL'CT, are responsible of the transitions which originate the emissive properties, but with very different contribution of the copper center, carborane cluster, and diphosphane phenyl rings for 1 and 2.

9.
Inorg Chem ; 60(13): 9287-9301, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34126007

RESUMO

The synthesis and the electrochemical, photophysical, structural, and photoconductive properties of three new heteroleptic Pd(II) complexes with various 3',5'- disubstituted-2-(2'-pyridil) pyrroles H(N^N) as coordinated ligands are reported. The coordination of the metal center was completed by a functionalized Schiff base H(O^N) used as an ancillary ligand. The [(N^N)Pd(O^N)] complexes showed highly interesting photoconductive properties which have been correlated to their electronic and molecular structures. Theoretical density functional theory (DFT) and time-dependent DFT calculations were performed, and the results were confronted with the organization in crystalline phase, allowing to point out that the photoconductive properties are mainly a consequence of an efficient intramolecular ligand-to-metal charge transfer, combined to the proximity between the central metal and the donor moieties in the solid-state molecular stacks. The reported results confirm that these new Pd(II) complexes form a novel class of organometallic photoconductors with intrinsic characteristics suitable for molecular semiconductors applications.

10.
Chemistry ; 25(60): 13665-13670, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31353749

RESUMO

[Cp*Rh(κ3 N,N',P-L)][SbF6 ] (Cp*=C5 Me5 ), bearing a guanidine-derived phosphano ligand L, behaves as a "dormant" frustrated Lewis pair and activates H2 and H2 O in a reversible manner. When D2 O is employed, a facile H/D exchange at the Cp* ring takes place through sequential C(sp3 )-H bond activation.

11.
J Am Chem Soc ; 140(3): 912-915, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29301393

RESUMO

The challenging control of the absolute configuration of chiral-at-metal complexes is efficiently achieved using the tripodal tetradentate ligand L. The optical resolution of rac-[RhCl2(κ4C,N,N',P-L)] mediated by (S)-α-phenylglycine provides access to enantiopure complexes of general formula [Rh(κ4C,N,N',P-L)A(Solv)][SbF6]n that enantioselectively catalyze the Diels-Alder reaction between methacrolein and HCp with enantiomeric ratio of up to >99/1. The nature of the active species, the origin of the enantioselectivity and mechanistic details are disclosed by means of NMR spectroscopy and DFT studies.

12.
Chemistry ; 23(58): 14532-14546, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28749064

RESUMO

Acetonitrile suspensions of the dichlorido complexes [MCl2 (κ4 C,N,N',P-L)] [M=Rh (1), Ir (2)] react with AgSbF6 in a 1:2 molar ratio affording the bis-acetonitrile complexes [M(κ4 C,N,N',P-L)(NCMe)2 ][SbF6 ]2 (3 and 4). The reaction takes place in a sequential manner and the intermediates can be isolated varying the M:Ag molar ratio. In a 2:1 molar ratio, it affords the dimetallic monochlorido-bridged compounds [{MCl(κ4 C,N,N',P-L)}2 (µ-Cl)][SbF6 ] (5 and 6). In a 1:1 molar ratio, the monosubstituted solvato-complexes [MCl(κ4 C,N,N',P-L)(Solv)][SbF6 ] (Solv=H2 O, MeCN, 7-10) were obtained. Finally, in a 2:3 molar ratio, it gives complexes 11 and 12 of formula [{M(κ4 C,N,N',P-L)(NCMe)(µ-Cl)}2 Ag][SbF6 ]3 in which a silver cation joints two cationic monosubstituted acetonitrile-complexes [MCl(κ4 C,N,N',P-L)(NCMe)]+ through the remaining chlorido ligands and two Ag⋅⋅⋅C interactions with one of the phenyl rings of each PPh2 group. In all the complexes, the aminic nitrogen and the central metal atom are stereogenic centers. In the trimetallic complexes 11 and 12, the silver atom is also a stereogenic center. The formation of the cation of the dimetallic complexes 5 and 6, as well as that of the trimetallic complexes 11 and 12, takes place with chiral molecular self-recognition. Experimental data and DFT calculations provide plausible explanations for the observed molecular recognition. The new complexes have been characterized by analytical, spectroscopic means and by X-ray diffraction methods.

13.
Chemistry ; 23(49): 11898-11907, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28644915

RESUMO

The hydrosilylation of CO2 with different silanes such as HSiEt3 , HSiMe2 Ph, HSiMePh2 , HSiMe(OSiMe3 )2 , and HSi(OSiMe3 )3 in the presence of catalytic ammounts of the iridium(III) complex [Ir(H)(CF3 CO2 )(NSiN*)(coe)] (1; NSiN*=fac-bis-(4-methylpyridine-2-yloxy); coe=cis-cyclooctene) has been comparatively studied. The activity of the hydrosilylation catalytic system based on 1 depends on the nature of the reducing agent, where HSiMe(OSiMe3 )2 has proven to be the most active. The aforementioned reactions were found to be highly selective toward the formation of the corresponding silylformate. It has been found that using 1 as catalyst precursor above 328 K decreases the activity through a thermally competitive mechanistic pathway. Indeed, the reduction of the ancillary trifluoroacetate ligand to give the corresponding silylether CF3 CH2 OSiR3 has been observed. Moreover, mechanistic studies for the 1-catalyzed CO2 -hydrosilylation reaction based on experimental and theoretical studies suggest that 1 prefers an inner-sphere mechanism for the CO2 reduction, whereas the closely related [Ir(H)(CF3 SO3 )(NSiN)(coe)] catalyst, bearing a triflate instead of trifluoroacetate ligand, follows an outer-sphere mechanism.

15.
Chemistry ; 22(31): 11064-83, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27345293

RESUMO

By changing the temperature from 283 to 233 K, the S (99 % ee) or R (96 % ee) enantiomer of the Friedel-Crafts (FC) adduct of the reaction between N-methyl-2-methylindole and trans-ß-nitrostyrene can be obtained by using (SRh ,RC )-[(η(5) -C5 Me5 )Rh{(R)-Prophos}(H2 O)][SbF6 ]2 as the catalyst precursor. This catalytic system presents two other uncommon features: 1) The ee changes with reaction time showing trends that depend on the reaction temperature and 2) an increase in the catalyst loading results in a decrease in the ee of the S enantiomer. Detection and characterization of the intermediate metal-nitroalkene and metal-aci-nitro complexes, the free aci-nitro compound, and the FC adduct-complex, together with solution NMR measurements, theoretical calculations, and kinetic studies have allowed us to propose two plausible alternative catalytic cycles. On the basis of these cycles, all the above-mentioned observations can be rationalized. In particular, the reversibility of one of the cycles together with the kinetic resolution of the intermediate aci-nitro complexes account for the high ee values achieved in both antipodes. On the other hand, the results of kinetic measurements explain the unusual effect of the increment in catalyst loading.

16.
Chemistry ; 22(41): 14717-29, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27553810

RESUMO

A series of rhodium-NSiN complexes (NSiN=bis (pyridine-2-yloxy)methylsilyl fac-coordinated) is reported, including the solid-state structures of [Rh(H)(Cl)(NSiN)(PCy3 )] (Cy=cyclohexane) and [Rh(H)(CF3 SO3 )(NSiN)(coe)] (coe=cis-cyclooctene). The [Rh(H)(CF3 SO3 )(NSiN)(coe)]-catalyzed reaction of acetophenone with silanes performed in an open system was studied. Interestingly, in most of the cases the formation of the corresponding silyl enol ether as major reaction product was observed. However, when the catalytic reactions were performed in closed systems, formation of the corresponding silyl ether was favored. Moreover, theoretical calculations on the reaction of [Rh(H)(CF3 SO3 )(NSiN)(coe)] with HSiMe3 and acetophenone showed that formation of the silyl enol ether is kinetically favored, while the silyl ether is the thermodynamic product. The dehydrogenative silylation entails heterolytic cleavage of the Si-H bond by a metal-ligand cooperative mechanism as the rate-determining step. Silyl transfer from a coordinated trimethylsilyltriflate molecule to the acetophenone followed by proton transfer from the activated acetophenone to the hydride ligand results in the formation of H2 and the corresponding silyl enol ether.

17.
Inorg Chem ; 53(3): 1699-711, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24437975

RESUMO

A series of dinuclear pyridine-4-thiolate (4-Spy)-bridged rhodium and iridium compounds [M(µ-4-Spy)(diolef)]2 [diolef = 1,5-cyclooctadiene (cod), M = Rh (1), Ir (2); diolef = 2,5-norbornadiene (nbd), M = Rh (3)] were prepared by the reaction of Li(4-Spy) with the appropriate compound [M(µ-Cl)(diolef)]2 (M = Rh, Ir). The dinuclear compound [Rh(µ-4-Spy)(CO)(PPh3)]2 (4) was obtained by the reaction of [Rh(acac)(CO)(PPh3)] (acac = acetylacetonate) with 4-pySH. Compounds 1-4 were assessed as metalloligands in self-assembly reactions with the cis-blocked acceptors [M(cod)(NCCH3)2](BF4) [M = Rh (a), Ir (b)] and [M(H2O)2(dppp)](OTf)2 [M = Pd (c), Pt (d); dppp = 1,3-bis(diphenylphosphino)propane]. The homometallic hexanuclear metallomacrocycles [{M2(µ-4-Spy)2(cod)2}2{M(cod)}2](BF4)2 (M = Rh [(1a)2], Ir [(2b)2]) and the heterometallic hexanuclear metallomacrocycles [{Rh2(µ-4-Spy)2(cod)2}2{Ir(cod)}2](BF4)2 [(1b)2], [{Rh2(µ-4-Spy)2(cod)2}2{M'(dppp)}2](OTf)4 (M' = Pd [(1c)2], Pt [(1d)2]), and [{Ir2(µ-4-Spy)2(cod)2}2{M'(dppp)}2](OTf)4 (M' = Pd [(2c)2], Pt [(2d)2]) were obtained. NMR spectroscopy in combination with electrospray ionization mass spectrometry was used to elucidate the nature of the metalloligands and their respective supramolecular assemblies. Most of the synthesized species were found to be nonrigid in solution, and their fluxional behavior was studied by variable-temperature (1)H NMR spectroscopy. An X-ray diffraction study of the assemblies (1a)2 and (1d)2 revealed the formation of rectangular (9.6 Å × 6.6 Å) hexanuclear metallomacrocycles with alternating dinuclear (Rh2) and mononuclear (Rh or Pt) corners. The hexanuclear core is supported by four pyridine-4-thiolate linkers, which are bonded through the thiolate moieties to the dinuclear rhodium units, exhibiting a bent-anti arrangement, and through the peripheral pyridinic nitrogen atoms to the mononuclear corners.

18.
Angew Chem Int Ed Engl ; 53(36): 9627-31, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25044533

RESUMO

In the presence of phosphanes (PR3 ), the amido-bridged trinuclear complex [{Ir(µ-NH2 )(tfbb)}3 ] (tfbb=tetrafluorobenzobarrelene) transforms into mononuclear discrete compounds [Ir(1,2-η(2) -4-κ-C12 H8 F4 N)(PR3 )3 ], which are the products of the CN coupling between the amido moiety and a vinylic carbon of the diolefin. An alternative synthetic approach to these species involves the reaction of the 18 e(-) complex [Ir(Cl)(tfbb)(PMePh2 )2 ] with gaseous ammonia and additional phosphane. DFT studies show that both transformations occur through nucleophilic attack. In the first case the amido moiety attacks a diolefin coordinated to a neighboring molecule following a bimolecular mechanism induced by the highly basic NH2 moiety; the second pathway involves a direct nucleophilic attack of ammonia to a coordinated tfbb molecule.

19.
Dalton Trans ; 53(21): 8948-8957, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38727513

RESUMO

The reaction of Pd(OAc)2 with (Z)-5-arylidene-4-(4H)-imidazolones (2a-e) and (Z)-4-arylidene-5(4H)-thiazolones (3a-e) in trifluoroacetic acid results in the corresponding orthopalladated dinuclear complexes (4a-e, imidazolones; 11a-d, thiazolones) with trifluoroacetate bridges through regioselective C-H activation at the ortho position of the 4-arylidene group. Compound 4e, which contains an imidazolone substituted at 2- and 4-positions of the arylidene ring with methoxide groups and exhibits strong push-pull charge transfer, is an excellent precursor for the synthesis of fluorescent complexes with green yellowish emission and remarkable quantum yields. Breaking the bridging system with pyridine yields the mononuclear complex 5e (ΦF = 5%), while metathesis of trifluoroacetate ligands with chloride leads to the dinuclear complex 6e, also a precursor of fluorescent complexes by breaking the chloride bridging system with pyridine (7e, ΦF = 7%), or by substitution of chloride ligands with pyridine (8e, ΦF = 15%) or acetylacetonate (9e, ΦF = 2%). In addition to notable photophysical properties, dinuclear complexes 4 and 11 also exhibit significant photochemical reactivity. Thus, irradiation of orthopalladates 4a-c and 11a-c in CH2Cl2 with blue light (465 nm) proceeds via [2 + 2] photocycloaddition of the CC double bonds of imidazolone and thiazolone ligands, yielding the corresponding cyclobutane-bridging diaminotruxillic derivatives 10a-c and 12a-c, respectively.

20.
Chempluschem ; : e202400410, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950125

RESUMO

Rh(III) and Ru(II) complexes, [RhCl2(κ4-N2N'P-L)][SbF6] (1) and [RuCl2(κ4-N2N'P-L)] (2), were synthesised using the tetradentate ligand L (L = N,N-bis[(pyridin-2-yl)methyl]-[2-(diphenylphosphino)phenyl]methanamine). The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4-N2N'P-L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4-N2N'P-L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4-N2N'P-L)}2(µ-Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self-recognition. In addition, a stable bimetallic mixed-valence complex [{Rh(κ4-N2N'P-L)}{Rh(COD)}(µ-Cl)2][SbF6]2 (7) (COD = cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA