Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Clin Oral Investig ; 27(6): 2465-2481, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017759

RESUMO

OBJECTIVES: The aim of this review to overview three-dimensional (3D) printing technologies available for different dental disciplines, considering the applicability of such technologies and materials development. MATERIALS AND METHODS: Source Arksey and O'Malley's five stages framework using PubMed, EMBASE, and Scopus (Elsevier) databases managed this review. Papers focusing on 3D printing in dentistry and written in English were screened. Scientific productivity by the number of publications, areas of interest, and the focus of the investigations in each dental discipline were extracted. RESULTS: Nine hundred thirty-four studies using 3D printing in dentistry were assessed. Limited clinical trials were observed, especially in Restorative, endodontics, and pediatric dentistry. Laboratory or animal studies are not reliable for clinical success, suggesting that clinical trials are a good approach to validate the new methods' outcomes and ensure that the benefits outweigh the risk. The most common application for 3D printing technologies is to facilitate conventional dental procedures. CONCLUSIONS: The constantly improving quality of 3D printing applications has contributed to increasing the popularity of these technologies in dentistry; however, long-term clinical studies are necessary to assist in defining standards and endorsing the safe application of 3D printing in dental practice. CLINICAL RELEVANCE: The recent progress in 3D materials has improved dental practice capabilities over the last decade. Understanding the current status of 3D printing in dentistry is essential to facilitate translating its applications from laboratory to the clinical setting.


Assuntos
Endodontia , Impressão Tridimensional , Humanos , Odontopediatria , Assistência Odontológica
2.
Clin Oral Investig ; 26(4): 3627-3636, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35001214

RESUMO

OBJECTIVES: The objective of this study is to formulate experimental dental adhesives with different polyhexamethylene guanidine hydrochloride concentrations (PHMGH) and evaluate their physical, chemical, and biological properties. MATERIALS AND METHODS: The experimental adhesives were formulated with 0 (control, GCTRL), 0.5 (G0.5%), 1 (G1%), or 2 (G2%) wt.% into the adhesive. The adhesives were analyzed for degree of conversion (DC%), softening in solvent (ΔKHN%), ultimate tensile strength (UTS), microtensile bond strength (µTBS) immediately and after 1 year of aging, antibacterial activity, and cytotoxicity. RESULTS: There were no differences among groups for DC%, ΔKHN%, and UTS (p > 0.05%). There were no differences between each PHMGH-doped adhesive compared to GCTRL in the immediate µ-TBS (p > 0.05). Adhesives with at least 1 wt.% of PHMGH presented better stability of µ-TBS. PHMGH-doped adhesives showed improved longitudinal µ-TBS compared to GCTRL (p < 0.05). Lower Streptococcus mutans biofilm formation was observed for PHMGH-doped adhesives (p < 0.05). There was lower viability of planktonic S. mutans in the media in contact with the samples when at least 1 wt.% of PHGMGH was incorporated (p < 0.05). The formulated adhesives showed no cytotoxicity against pulp cells (p > 0.05). CONCLUSIONS: The adhesive with 2 wt.% of PHMGH showed the highest antibacterial activity, without affecting the physicochemical properties and cytotoxicity, besides conferring stability for the dental adhesion. CLINICAL RELEVANCE: PHMGH, a positively charged polymer, conveyed antibacterial activity to dental adhesives. Furthermore, it did not negatively affect the essential physicochemical and biocompatibility properties of the adhesives. More importantly, the incorporation of PHMGH provided stability for the µ-TBS compared to the control group without this additive.


Assuntos
Colagem Dentária , Cimentos de Resina , Adesivos , Cimentos Dentários/farmacologia , Dentina , Adesivos Dentinários/farmacologia , Guanidina , Teste de Materiais , Polímeros , Cimentos de Resina/farmacologia , Resistência à Tração
3.
Clin Oral Investig ; 24(2): 777-784, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31154540

RESUMO

OBJECTIVES: The aim of this study was to evaluate the influence of [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC) in the physico-chemical properties, antibacterial activity and cytotoxicity of an experimental resin-based sealant. MATERIALS AND METHODS: An experimental resin-based sealant was formulated with dimethacrylates and a photoinitiator system. METAC was added at 2.5 wt.% (G2.5%) and 5 wt.% (G5%) into the experimental resin-based sealant, and one group remained without METAC as control (GCTRL). The resin-based sealants were analysed for polymerization behaviour and degree of conversion (DC), Knoop hardness (KHN) and softening in solvent (ΔKHN), ultimate tensile strength (UTS), contact angle, surface free energy (SFE), immediate and long-term micro-shear bond strength (µ-SBS) and antibacterial activity and cytotoxicity against human keratinocytes. RESULTS: The experimental resin-based sealants presented different polymerization behaviours without significant differences in the DC (p > 0.05). There was no significant difference for initial KHN (p > 0.05). The ΔKHN ranged from 51.62 (±3.70)% to 62.40 (±4.14)%, with higher values for G5% (p < 0.05). G2.5% and G5% had decreased µ-SBS between immediate and long-term tests (p < 0.05) without significant differences among groups in the immediate and long-term analyses (p > 0.05). There were no significant differences for UTS, contact angle and SFE among groups (p > 0.05). G2.5% and G5% presented immediate and long-term antibacterial activity (p < 0.05) without cytotoxicity compared to GCTRL (p > 0.05). CONCLUSION: The addition of METAC provided antibacterial activity to the experimental resin-based sealant. CLINICAL RELEVANCE: METAC is an effective quaternary ammonium compound as an antibacterial agent for resin-based sealants without cytotoxic effects against human keratinocytes.


Assuntos
Materiais Dentários , Antibacterianos , Humanos , Teste de Materiais , Selantes de Fossas e Fissuras , Polimerização , Compostos de Amônio Quaternário , Resistência à Tração
4.
J Adhes Dent ; 19(5): 379-384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28944375

RESUMO

PURPOSE: To formulate adhesive resins with 2 wt% of hydroxyapatite (HAp), α-tricalcium phosphate (α-TCP), or octacalcium phosphate (OCP) and to compare these groups with an unfilled adhesive regarding the degree of conversion, polymerization rate, microshear bond strength and mineral deposition. MATERIALS AND METHODS: The experimental adhesive resin was formulated mixing 66.6 wt% bisphenol A glycol dimethacrylate (bis-GMA), 33.3 wt% 2-hydroxyethyl methacrylate (HEMA), and a photoinitiator system. OCP, α-TCP, or HAp were added in concentrations of 2 wt% to the adhesive, and a group without additional filler was used as the control. Calcium-phosphate particle sizes were determined using a laser-diffraction particle-size analyzer. The degree of conversion (DC) of the adhesives was determined with FTIR-ATR. The polymerization rate (Rp) was determined using differential scanning calorimetry equipped with a photocalorimetric accessory. Adhesive bonding was evaluated using the microshear bond strength test in sound bovine mandibular incisors. Mineral deposition in human third molars affected by caries was evaluated using micro-Raman spectroscopy after selective removal of carious dentin. Data were analyzed by one-way ANOVA and Tukey's test (α = 0.05). RESULTS: HAp presented the highest mean particle size (26.7 nm), while that of α-TCP was 6.03 nm and OCP was 4.94 nm. The DC of all groups was above 50%. The OCP group showed the fastest Rp, with no difference from the control group (p > 0.05). The α-TCP group presented the highest microshear bond strength (p = 0.005) and mineral deposition at the interface. CONCLUSION: Incorporation of α-TCP nanofiller into adhesive resins can improve bond strengths and may be a promising strategy to achieve therapeutic remineralization at the composite-dentin interface.


Assuntos
Colagem Dentária , Cimentos Dentários , Animais , Bis-Fenol A-Glicidil Metacrilato , Fosfatos de Cálcio , Bovinos , Resinas Compostas , Dentina , Adesivos Dentinários , Humanos , Teste de Materiais , Cimentos de Resina
5.
Braz Oral Res ; 38: e001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198301

RESUMO

The aim of this study was to evaluate the influence of adding quaternary ammonium methacrylates (QAMs) to experimental adhesives by assessing the degree of conversion (DC), cytotoxicity against keratinocytes and fibroblasts, and antibacterial activity against biofilm formation. Two QAMs were added to an experimental adhesive: dimethylaminododecyl methacrylate bromododecane (DMADDM) or dimethylaminododecyl methacrylate bromohexadecane (DMAHDM) at three concentrations each: 1, 2.5, and 5 wt.%. Experimental adhesive without QAMs (control group) and commercially available Transbond XT Primer (3M Unitek, Monrovia, California, USA) were used for comparisons. The adhesives were tested for DC, cytotoxicity against keratinocytes and fibroblasts, and antibacterial activity against biofilm formation. DC, cytotoxicity against fibroblasts, and antibacterial activity were analyzed using one-way ANOVA and Tukey's multiple comparisons. Cytotoxicity against keratinocytes was evaluated using the Kruskal Wallis and Dunn's post-hoc (α = 5%) tests. Transbond showed lower DC as compared to 5% DMAHDM, 1% DMADDM, and 5% DMADDM (p < 0.05). However, all groups presented proper DC when compared to commercial adhesives in the literature. In the evaluation of cytotoxicity against keratinocytes, Transbond induced higher viability than 2.5 wt.% groups (p < 0.05). Against fibroblasts, Transbond induced higher viability as compared to 5 wt.% groups (p < 0.05). DMAHDM at 5 wt.% reduced biofilm formation when compared to all the other groups (p < 0.05). Despite their cytotoxic effect against keratinocytes, gingival fibroblasts showed higher viability. DMAHDM at 5 wt.% decreased Streptococcus mutans viability. The incorporation of DMAHDM at 5 wt.% may be a strategy for reducing the development of white spot lesions.


Assuntos
Antibacterianos , Bis-Fenol A-Glicidil Metacrilato , Hidrocarbonetos Bromados , Metacrilatos , Metilaminas , Compostos de Amônio Quaternário , Metacrilatos/farmacologia , Antibacterianos/farmacologia
6.
ACS Appl Mater Interfaces ; 16(26): 34057-34068, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910292

RESUMO

The current longevity of dental resins intraorally is limited by susceptibility to acidic attacks from bacterial metabolic byproducts and vulnerability to enzymatic or hydrolytic degradation. Here, we demonstrate synthesizing an ionic liquid-based antibiofilm silane effective against Streptococcus mutans, a major caries pathogen. Furthermore, we incorporate this silane into dental resins, creating antibiofilm- and degradation-resistant materials applicable across resin types. FTIR, UV-vis, and NMR spectroscopy confirmed the synthesis of the expected ionic liquid-based silane. The characterization of SiO2 after the silanization indicated the presence of the silane and how it interacted with the oxide. All groups achieved a degree of conversion similar to that found for commercial resin composites immediately and after two months of storage in water. The minimum of 2.5 wt % of silane led to lower softening in solvent than the control group (GCTRL) (p < 0.05). While the flexural strength indicated a lower value from 1 wt % of silane compared to GCTRL (p < 0.05), the ultimate tensile strength did not indicate differences among groups (p > 0.05). There was no difference within groups between the immediate and long-term tests of flexural strength (p > 0.05) or ultimate tensile strength (p > 0.05). The addition of at least 5 wt % of silane reduced the viability of S. mutans compared to GCTRL (p < 0.05). The fluorescence microscopy analysis suggested that the higher the silane concentration, the higher the amount of bacteria with membrane defects. There was no difference among groups in the cytotoxicity test (p > 0.05). Therefore, the developed dental resins displayed biocompatibility, proper degree of conversion, improved resistance against softening in solvent, and stability after 6 months of storage in water. This material could be further developed to produce polymeric antimicrobial layers for different surfaces, supporting various potential avenues in developing novel biomaterials with enhanced therapeutic characteristics using ionic liquid-based materials.


Assuntos
Líquidos Iônicos , Nanopartículas , Silanos , Dióxido de Silício , Streptococcus mutans , Silanos/química , Silanos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Resinas Compostas/química , Resinas Compostas/farmacologia , Camundongos , Biofilmes/efeitos dos fármacos , Resistência à Tração
7.
Biomedicines ; 11(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37238927

RESUMO

Damage in the bonding interface is a significant factor that leads to premature failure of dental bonded restorations. The imperfectly bonded dentin-adhesive interface is susceptible to hydrolytic degradation and bacterial and enzyme attack, severely jeopardizing restorations' longevity. Developing caries around previously made restorations, also called "recurrent or secondary caries," is a significant health problem. The replacement of restorations is the most prevailing treatment in dental clinics, leading to the so-called "tooth death spiral". In other words, every time a restoration is replaced, more tooth tissue is removed, increasing the size of the restorations until the tooth is eventually lost. This process leads to high financial costs and detriment to patients' quality of life. Since the complexity of the oral cavity makes prevention a challenging task, novel strategies in Dental Materials and Operative fields are required. This article briefly overviews the physiological dentin substrate, features of dentin bonding, challenges and clinical relevance. We discussed the anatomy of the dental bonding interface, aspects of the degradation at the resin-dentin interface, extrinsic and intrinsic factors affecting dental bonding longevity, perspectives on resin and collagen degradation and how these subjects are connected. In this narrative review, we also outlined the recent progress in overcoming dental bonding challenges through bioinspiration, nanotechnology and advanced techniques to reduce degradation and improve dental bonding longevity.

8.
Int J Prosthodont ; 35(4): 460-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125870

RESUMO

PURPOSE: To evaluate the effect of different luting techniques on the shear bond strength (SBS) of ultra-translucent multi-layered zirconia (UTML) after 24 hours and 1 year of water storage and to analyze the influence of primers on the wettability of the UTML MTU-6 surface. MATERIALS AND METHODS: Four commercial resin cements were evaluated: Variolink Esthetic LC (Ivoclar Vivadent); RelyX Ultimate (3M); Estecem II (Tokuyama); and Panavia V5 (Kuraray Noritake). Panavia V5 was tested with and without Panavia V5 Tooth Primer (Kuraray Noritake). The SBS immediately after cement/primer application and after aging, scanning electron microscopy of the surfaces, and the contact angle of the primers on the UTML surfaces were analyzed. RESULTS: At 24 hours, Panavia V5 with Tooth Primer exhibited the highest SBS. After 1 year, the SBS of Variolink Esthetic LC and Panavia V5 with Tooth Primer decreased, and RelyX Ultimate increased. There was no statistical difference between RelyX Ultimate and Panavia V5 with Tooth Primer at 1 year. For all groups, the rate of adhesive failures increased after 1 year. The highest contact angle was observed on the control (no primer) group, and the lowest contact angles were obtained when the YSZ surface was treated with Scotchbond Universal and the combination of Clearfil Ceramic Primer Plus and Tooth Primer. CONCLUSION: Clinicians should prefer 10-MDP-based cementation systems that can be properly polymerized to achieve a stable long-term bond strength to YSZ restorations. Also, the use of ceramic primers improves the capability of the cement to establish an intimate contact with the intaglio of the restoration.


Assuntos
Colagem Dentária , Cimentos de Resina , Colagem Dentária/métodos , Cimentos Dentários/química , Materiais Dentários , Cimentos de Resina/química , Água , Zircônio/química
9.
J Funct Biomater ; 13(4)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36278659

RESUMO

Current dental adhesives lack antibacterial properties. This study aimed to explore the effect of incorporating benzyldimethyldodecyl ammonium chloride (BDMDAC) on the degree of conversion, contact angle, ultimate tensile strength (UTS), microtensile bond strength (µTBS), cytotoxicity, antibacterial and bonding performance after artificial aging. A dental adhesive was doped with BDMDAC in the concentration range of 1-5 wt.%. For antibacterial assays, the BDMDAC compound was subject to planktonic cells of Streptococcus mutans. Then, after incorporation into the dental adhesive, an S. mutans biofilm model was used to grow 48 h-mature biofilms. The biofilms grown over the formulated materials were assessed by colony-forming unit (CFU) counting assay and fluorescence microscopy staining. In addition, the cytotoxicity was evaluated. Samples were subjected to 10,000 thermal cycles for aging and evaluated by UTS, µTBS, and CFU. Incorporating BDMDAC did not increase the cytotoxicity or change the physical properties when the mass fraction of the BDMDAC was 1-5 wt.%. The UTS of BDMDAC-doped adhesives was not impaired immediately or over time. A significant bacterial reduction was obtained for the mass fraction of the BDMDAC greater than 3 wt.%. However, the BDMDAC-doped adhesives did not offer an antibacterial effect after artificial aging. The overall results indicate that the BDMDAC strategy has the potential to control of microbial growth of cariogenic planktonic cells and biofilms. However, other new technological approaches are needed to overcome the deleterious effect of BDMDAC release over time such as those based on the principle of drug delivery systems whereby the BDMDAC is transported on microparticles or core shells, providing tangible benefits to oral health over time.

10.
Int J Esthet Dent ; 16(2): 216-230, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33969976

RESUMO

AIM: The altered size, shape or position of the teeth affect their proper alignment, the harmony of the smile, and the dentofacial composition. The aim of this article is to describe a minimally invasive approach to improve the esthetics of a patient through the golden proportion (GP) concept with the use of direct composite resin stratification. MATERIALS AND METHODS: A 26-year-old female complained about the appearance of her smile due to the existing spaces between her anterior teeth; her small, peg-shaped lateral incisors; the wear of her canines; and the color of her teeth. The clinical examination confirmed diastemas in the anterior teeth, peg-shaped maxillary lateral incisors, and incisal wear of the canines. Treatment with dental whitening followed by composite restorations was performed in line with the current conservative approach in dentistry. The patient was followed up for 18 months. CONCLUSION: The use of the additive technique with composite for the closure of diastemas under the GP concept illustrates an example of viable management to restore esthetic harmony through a minimally invasive approach, with reliability over time and the advantages of being less laborious, less time consuming, and less expensive than other approaches. The treatment plan was acceptable to the patient.


Assuntos
Estética Dentária , Incisivo , Adulto , Feminino , Seguimentos , Humanos , Reprodutibilidade dos Testes , Sorriso
11.
J Dent ; 114: 103818, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560223

RESUMO

OBJECTIVES: This study aimed to (1) formulate blend resins with 2.5 or 5 wt.% of the methacrylate monomer 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT), and (2) to evaluate the blend resins regarding the physicochemical and biological properties. METHODS: The base resin was formulated mixing 60 wt.% of bisphenol A glycol dimethacrylate and 40 wt.% of triethylene glycol dimethacrylate with photoinitiator/co/initiator system. TAT was added at 2.5 (G2.5%) or 5 (G5%) wt.%, and a group without TAT was used as control (Gctrl). The resins were analyzed for degree of conversion (DC), Knoop hardness (KHN), softening in solvent (ΔKHN), ultimate tensile strength (UTS), contact angle, surface free energy (SFE), antibacterial activity against Streptococcus mutans biofilm formation, and cytotoxicity against human keratinocytes. RESULTS: There was no difference for the DC (p = 0.676). The addition of TAT at 5 wt.% induced higher KHN (p<0.001), higher resistance against softening in solvent (p<0.001), and higher UTS (p = 0.04). There were no statistically significant differences for contact angle with water (p = 0.106), α-bromonaphtalene (p = 0.454), and SFE (p = 0.172). The higher the TAT concentration, the higher the antibacterial activity (p<0.001). G2.5% showed no cytotoxicity compared to Gctrl (p>0.05), and G5% induced lower cell viability (p<0.05). CONCLUSIONS: The addition of 2.5 wt.% of TAT is suitable for conveying antibacterial activity for dental resins without changing the physicochemical properties or impairing the cytotoxic effect. CLINICAL RELEVANCE: Methacrylate monomers that decrease bacterial viability and copolymerize with the resin matrix are exciting approaches to developing therapeutic materials. TAT showed promising properties to may hamper and prevent carious lesions when incorporated into dental materials. Further evaluations with higher cariogenic challenges will be carried to analyze the formulated materials.


Assuntos
Metacrilatos , Triazinas , Antibacterianos/farmacologia , Resinas Compostas/toxicidade , Humanos , Teste de Materiais , Resinas Sintéticas/toxicidade , Streptococcus mutans , Triazinas/farmacologia
12.
Materials (Basel) ; 14(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467665

RESUMO

This review aimed to assess the antimicrobial effects of different antibacterial agents/compounds incorporated in resin-based dental sealants. Four databases (PubMed, MEDLINE, Web of Science and Scopus) were searched. From the 8052 records retrieved, 275 records were considered eligible for full-text screening. Nineteen studies met the inclusion criteria. Data extraction and quality assessment was performed by two independent reviewers. Six of the nineteen included studies were judged to have low risk of bias, and the rest had medium risk of bias. Compounds and particles such as zinc, tin, Selenium, chitosan, chlorhexidine, fluoride and methyl methacrylate were found to be effective in reducing the colony-forming unit counts, producing inhibition zones, reducing the optical density, reducing the metabolic activities, reducing the lactic acid and polysaccharide production and neutralizing the pH when they are added to the resin-based dental sealants. In addition, some studies showed that the antibacterial effect was not significantly different after 2 weeks, 2 months and 6 months aging in distilled water or phosphate-buffered saline. In conclusion, studies have confirmed the effectiveness of adding antibacterial agents/compounds to dental sealants. However, we should consider that these results are based on laboratory studies with a high degree of heterogeneity.

13.
Dent Mater ; 37(2): e85-e93, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33243439

RESUMO

OBJECTIVE: To determine the effect of organosilane content on the physicochemical properties of model composites formulated with nano-sized fillers. METHODS: Model composites were formulated with dimethacrylate-based monomers, a photoinitiator/co-initiator system and silicon dioxide nano-sized fillers treated with different amounts of 3-methacryloxypropyltrimethoxysilane (MPTS): 1.0 (G1%), 2.0 (G2%), 5.0 (G5%), 7.5 (G7.5%) and 10 (G10%) wt.% relative to SiO2. Non-silanized fillers (G0%) were used in the control group. Degree of conversion (DC) was assessed by Fourier-transformed infrared spectroscopy (ATR-FTIR). Knoop hardness (KHN) and elastic modulus were determined before and after water storage for 4 months. Water sorption (Wsp) and solubility (Wsl) were calculated by successive mass determinations in analytical balance. Surface gloss and roughness were characterized before and after toothbrushing simulation. RESULTS: With the exception of those fillers treated with 1% MPTS, DC was not dependent on the silane content. Within the silanized groups, G1% showed the lowest initial and final KHN, without statistical difference from G0%. The elastic modulus was not affected by the silane content, regardless of the storage condition, but those groups formulated with at least 5% silane presented improved values after storage. Silane content did not affect the WSl, but affected Wsp, in which those groups formulated with at least 2 wt.% of MPTS produced a more resistant material than G0%. The use of treated particles with at least 2 wt.% of silane was able to produce materials that did not change their gloss after the brushing process. Additionally, these materials presented lower surface roughness than G0% after the brushing process (p < 0.05). SIGNIFICANCE: The concentration of MPTS affected the physicochemical properties of nano-filled composites. Therefore, 2 wt.% of silane was the optimized quantity to produce materials resistant to degradation, both in bulk and surface properties.


Assuntos
Silanos , Dióxido de Silício , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Teste de Materiais , Metacrilatos , Polietilenoglicóis , Ácidos Polimetacrílicos , Propriedades de Superfície
14.
Acta Biomater ; 134: 337-347, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303014

RESUMO

The limited durability of dentin bonding harshly shortens the lifespan of resin composites restorations. The controlled, dynamic movement of materials through non-contacting forces provides exciting opportunities in adhesive dentistry. We, herein, describe comprehensive investigations of a new dental adhesive with superparamagnetic iron oxide nanoparticles (SPIONs) sensitive to magnetic fields for bonding optimization. This contribution outlines a roadmap of (1) designing and tuning of an adhesive formulation containing SPIONs to enhance penetrability into etched dentin guided by magnetic-field; (2) employing a clinically relevant model of simulated hydrostatic pulpal pressure on the microtensile bond to dentin; and (3) investigating a potential antibacterial effect of the formulated adhesives, and their biocompatibility. SPION-concentration-dependency chemical and mechanical behavior was shown via the degree of conversion, ultimate tensile strength, and micro shear bond strength to dentin. The effects of SPIONs carried on a dental adhesive on the bonding strength to dentin are studied in depth by combining experiments with in vitro simulated model. The results show that under the guided magnetic field, 0.07 wt.% of SPIONs-doped adhesive increased the bond strength that surpasses the reduction caused by hydrostatic pulpal pressure. Using a magnetic guide workflow during the bonding procedures, SPIONs-doped adhesives improved dentin's adhesion without changing adhesives' physicochemical properties. This outcome addresses the key challenge of poor resin infiltration of dentin's conventional total etching during the bonding procedure. The real-time magnetic motion of dental adhesives may open new paths to enhance resin-based restorations' longevity. STATEMENT OF SIGNIFICANCE: In this study, dental adhesives containing superparamagnetic iron oxide nanoparticles (SPIONs) were developed to enhance penetrability into dentin guided by a magnetic field. The adhesives were screened for physical, chemical, antibacterial properties, and cytotoxicity. For the first time, simulated pulpal pressure was used concurrently with the magnetic field to simulate a clinical setting. This approach showed that it is feasible to overcome pulpal pressure jeopardization on bond strength when SPIONs and a magnetic field are applied. The magnetic-responsive adhesives had great potential to improve bond strength, opening new paths to enhance resin-based restorations' longevity without affecting adhesives' biological properties. The use of magnetic-responsive particles and magnetically assisted motion is a promising strategy to improve the sealing ability of dental adhesives.


Assuntos
Adesivos Dentinários , Cimentos de Resina , Resinas Compostas , Dentina , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Teste de Materiais
15.
J Appl Oral Sci ; 29: e20201031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33950080

RESUMO

METHODOLOGY: Fixed orthodontic appliances may lead to biofilm accumulation around them that may increase caries risk. This study aimed to evaluate the influence of quaternary ammonium methacrylates (QAMs) on the physicochemical properties, cytotoxicity, and antibacterial activity of adhesive resins for orthodontic purposes. A base resin was prepared with a comonomer blend and photoinitiator/co-initiator system. Two different QAMs were added to the base adhesive: dimethylaminododecyl methacrylate at 5 wt.% (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) at 10 wt.%. The base adhesive, without QAMs, (GC) and the commercial Transbond™ XT Primer 3M (GT) were used as control. The resins were tested immediately and after six months of aging in the water regarding the antibacterial activity and shear bond strength (SBS). The antibacterial activity was tested against Streptococcus mutans via metabolic activity assay (MTT test). The groups were also tested for the degree of conversion (DC) and cytotoxicity against keratinocytes. RESULTS: The resins containing QAM showed antibacterial activity compared to the commercial material by immediately reducing the metabolic activity by about 60%. However, the antibacterial activity decreased after aging (p<0.05). None of the groups presented any differences for SBS (p>0.05) and DC (p>0.05). The incorporation of DMADDM and DMAHDM significantly reduced the keratinocyte viability compared to the GT and GC groups (p<0.05). CONCLUSION: Both adhesives with QAMs showed a significant reduction in bacterial metabolic activity, but this effect decreased after water aging. Lower cell viability was observed for the group with the longer alkyl chain-QAM, without significant differences for the bonding ability and degree of conversion. The addition of QAMs in adhesives may affect the keratinocytes viability, and the aging effects maybe decrease the bacterial activity of QAM-doped materials.


Assuntos
Braquetes Ortodônticos , Antibacterianos , Biofilmes , Cimentos Dentários , Teste de Materiais , Metacrilatos , Cimentos de Resina , Streptococcus mutans
16.
Front Oral Health ; 2: 628026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047992

RESUMO

Bioactive materials can reduce caries lesions on the marginal sealed teeth by providing the release of ions, such as calcium, phosphate, fluoride, zinc, magnesium, and strontium. The presence of such ions affects the dissolution balance of hydroxyapatite, nucleation, and epitaxial growth of its crystals. Previous studies mostly focused on the ion-releasing behavior of bioactive materials. Little is known about their wear behavior sealed tooth under mastication. This study aimed to evaluate the wear behavior and surface quality of dental bioactive resins under a simulated chewing model and compare them with a resin without bioactive agents. Three bioactive resins (Activa, BioCoat, and Beautifil Flow-Plus) were investigated. A resin composite without bioactive agents was used as a control group. Each resin was applied to the occlusal surface of extracted molars and subjected to in vitro chewing simulation model. We have assessed the average surface roughness (Ra), maximum high of the profile (Rt), and maximum valley depth (Rv) before and after the chewing simulation model. Vickers hardness and scanning electron microscopy (SEM) also analyzed the final material surface quality). Overall, all groups had increased surface roughness after chewing simulation. SEM analysis revealed a similar pattern among the materials. However, the resin with polymeric microcapsules doped with bioactive agents (BioCoat) showed increased surface roughness parameters. The material with Surface Pre-reacted Glass Ionomer (Beautifil Flow-Plus) showed no differences compared to the control group and improved microhardness. The addition of bioactive agents may influence surface properties, impairing resin composites' functional and biological properties. Future studies are encouraged to analyze bioactive resin composites under high chemical and biological challenges in vitro with pH cycles or in situ models.

17.
Dent J (Basel) ; 9(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34435995

RESUMO

How dentists cure a resin-based material has deleterious effects on the material's properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering from dental caries. To evaluate the influence of varying radiant exposure on the degree of conversion (DC%), Streptococcus mutans biofilm growth, and surface roughness of bulk-fill composites under different light-curing conditions. Two light-curing units (LCU) at 600 and 1000 mW/cm2 were used to simulate curing conditions with different angulations (∢20° and ∢35°) or 2 mm-distance displacements of the LCU tip. The radiant exposure (RE) was assessed, and the composites were analyzed for DC%. Biofilm formation was induced over the bulk-fill composites and analyzed via colony-forming units counting and scanning electron microscopy (SEM). The surface roughness was analyzed via a profilometer and SEM after biofilm formation. Curing conditions with different angulation or displacement decreased RE compared to the "optimal condition". The moderately (∢35°) angulated LCU tip and low (600 mW/cm2) radiant emittance significantly reduced the DC% (p < 0.05). The difference in DC% between the top and bottom of the composites ranged from 8 to 11% for 600 mW/cm2 and 10 to 20% for 1000 mW/cm2. Greater S. mutans biofilm and surface changes were found in composites with non-optimal RE delivery (e.g., tip displacement and angulation) (p < 0.05). Inadequate polymerization of bulk-fill composites was associated with more biofilm accumulation and surface topography changes. Overall, non-optimally performed curing procedures reduced the amount of delivered RE, which led to low DC%, more biofilm formation, and higher surface roughness. The improper light-curing of bulk-fill composites compromises their physicochemical and biological properties, which could lead to inferior clinical performance and reduced restorative treatments' longevity.

18.
J Adv Prosthodont ; 13(4): 237-245, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34504675

RESUMO

PURPOSE: This study aimed to compare the microshear bond strength (µSBS) of dual-cure resin cement in CAD-CAM zirconia after different cleaning techniques. MATERIALS AND METHODS: Fifty discs of zirconia-based ceramic from Ivoclar Vivadent were embedded in acrylic resin. The discs were divided into five groups according to the cleaning methods used: Group 1: drying with spraying + sandblasting with Al2O3; Group 2: washed with water and dried with spraying + sandblasting with Al2O3; Group 3: washed with distilled water and dried with spraying + sandblasting with Al2O3 + zirconium oxide (Ivoclean); Group 4: washed with distilled water and dried with spraying + sandblasting with Al2O3 + potassium hydroxide (Zirclean); and Group 5: washed with distilled water and dried with spraying + sandblasting with Al2O3 + 1% NaClO. All of the groups were contaminated with artificial saliva for 1 minute and then cleaned. Statistical analyses were performed using ANOVA and Tukey's tests. RESULTS: There were statistically significant differences among all groups for µSBS (P < .05). The group treated with zirconium oxide (Group 3) showed the highest µSBS (18.75 ± 0.23 MPa). CONCLUSION: When applied to zirconia, the cleaning methods affected the bonding with resin cement differently.

19.
Bioact Mater ; 6(9): 2667-2675, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33665499

RESUMO

Resin infiltrants have been effectively applied in dentistry to manage non-cavitated carious lesions in proximal dental surfaces. However, the common formulations are composed of inert methacrylate monomers. In this study, we developed a novel resin infiltrant with microcapsules loaded with an ionic liquid (MC-IL), and analyzed the physical properties and cytotoxicity of the dental resin. First, the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) was synthesized. BMI.NTf2 has previously shown antibacterial activity in a dental resin. Then, MC-IL were synthesized by the deposition of a preformed polymer. The MC-IL were analyzed for particle size and de-agglomeration effect via laser diffraction analysis and shape via scanning electron microscopy (SEM). The infiltrants were formulated, and the MC-IL were incorporated at 2.5%, 5%, and 10 wt%. A group without MC-IL was used as a control. The infiltrants were evaluated for ultimate tensile strength (UTS), contact angle, surface free energy (SFE), and cytotoxicity. The MC-IL showed a mean particle size of 1.64 (±0.08) µm, shriveled aspect, and a de-agglomeration profile suggestive of nanoparticles' presence in the synthesized powder. There were no differences in UTS among groups (p > 0.05). The incorporation of 10 wt% of MC-IL increased the contact angle (p < 0.05), while the addition from 5 wt% reduced the SFE in comparison to the control group (p < 0.05). The human cell viability was above 90% for all groups (p > 0.05). The incorporation of microcapsules as a drug-delivery system for ionic liquids may be a promising strategy to improve dental restorative materials.

20.
Dent Mater ; 37(3): e182-e193, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33342588

RESUMO

OBJECTIVE: Various nanoparticles are currently under investigation to impart biointeractivity for dental materials. This study aimed to: (1) formulate an experimental dental adhesive containing ZnO nanoparticles; (2) evaluate its chemical and mechanical properties; and (3) assess the antibacterial response against oral microcosm biofilm. METHODS: Nanosized ZnO was chemically and morphologically evaluated. ZnO was incorporated at 0 (GCTRL), 2.5 (G2.5%), 5 (G5%) and 7.5 (G5%) wt.% in an experimental dental adhesive. The adhesives were evaluated for the degree of conversion (DC), flexural strength (FS), and elastic modulus (E). The antibacterial activity was evaluated using a 48h-microcosm biofilm model after the formation of acquired pellicle on samples' surfaces. Colony-forming units (CFU), metabolic activity, and live/dead staining were assessed. RESULTS: Nanosized ZnO presented characteristic peaks of Zn-O bonds, and the particles were arranged in agglomerates. The DC ranged from 62.21 (±1.05) % for GCtrl to 46.15 (±1.23) % for G7.5% (p<0.05). G7.5% showed lower FS compared to all groups (p<0.05). Despite achieving higher E (p<0.05), G2.5% did not show differences for GCtrl regarding the FS (p>0.05). G7.5% had lower CFU/mL compared to GCtrl for mutans streptococci (p<0.05) and total microorganisms (p<0.05), besides presenting lower metabolic activity (p<0.05) and higher dead bacteria via biofilm staining. SIGNIFICANCE: The dental adhesives' physicochemical properties were similar to commercial adhesives and in compliance with ISO recommendations. G7.5% restricted the growth of oral microcosm biofilm without impairing the physicochemical performance.


Assuntos
Óxido de Zinco , Antibacterianos/farmacologia , Biofilmes , Cimentos Dentários , Teste de Materiais , Metacrilatos , Cimentos de Resina , Streptococcus mutans , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA