Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Genet Med ; : 101288, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39369315

RESUMO

PURPOSE: Despite ever-increasing knowledge of the genetic etiologies of neurodevelopmental disorders, approximately half remain undiagnosed following exome or genome sequencing. Here, we provide a deep clinical characterization of 11 previously unreported patients with a recently described neurodevelopmental disorder (NDD) due to pathogenic variants in RNU4-2. METHODS: The eleven patients were identified in a pool of 70 patients selected for targeted RNU4-2 sequencing on the basis of their clinical phenotypes from a cohort of 1032 individuals with a NDD and without a prior genetic diagnosis. RESULTS: The eleven patients were aged between 13 months and 36 years. All patients showed moderate to severe developmental delay and/or intellectual disability. Height and weight were below 10th percentile and most showed microcephaly. In almost 50% of the patients, intrauterine growth retardation was detected. All patients showed a distinctive pattern of dysmorphic features, including hooded upper eyelid and epicanthus, full cheeks, tented philtrum, mouth constantly slightly open with an everted lower lip vermilion, high palate and profuse drooling. Of 11 patients, 64% also presented with ophthalmological problems (mainly strabismus, nystagmus and refraction errors) and 64% had musculoskeletal features (joint hypermobility, mild scoliosis, easy fractures). CONCLUSION: This work provides an improved characterization of the phenotypic spectrum of RNU4-2 syndrome across different age groups, and demonstrates that thorough clinical assessment of patients with an NDD can be enhanced significantly for this novel syndrome.

2.
J Med Genet ; 60(6): 540-546, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36600615

RESUMO

BACKGROUND: Consanguineous couples have an increased risk of severe diseases in offspring due to autosomal recessive disorders. Exome sequencing (ES) offers the possibility of extensive preconception carrier screening (PCS) in consanguineous couples who may be at risk of rare genetic disorders. METHODS: We retrospectively analysed ES data from 65 probands affected with rare genetic disorders born from consanguineous couples. We explored diagnostic yield and carrier status for recessive disorders. RESULTS: The overall diagnostic yield in a singleton approach was 53.8%, mostly recessive variants. In a hypothetical exome-based PCS, only 11.7% of these causative rare variants would have been missed in the filtering process. Carrier screening for recessive conditions allowed the identification of at least one additional pathogenic or likely pathogenic variant in 85.7% of the probands, being the majority with a gene carrier frequency <1 in 200. In addition, considering only clinically actionable conditions, we estimated that 12.3% of our close consanguineous couples may be at risk for an additional recessive disease. CONCLUSIONS: Our results demonstrate that ES outperforms panel-based screening in a PCS context in consanguineous couples and could potentially increase their reproductive autonomy and facilitate informed decision-making.


Assuntos
Doenças Raras , Humanos , Consanguinidade , Sequenciamento do Exoma , Estudos Retrospectivos , Genes Recessivos , Frequência do Gene , Doenças Raras/genética , Triagem de Portadores Genéticos
3.
J Med Genet ; 60(7): 685-691, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36446584

RESUMO

BACKGROUND/OBJECTIVES: Exome sequencing may identify pathogenic variants unrelated with the purpose of the analysis. We investigated the frequency of secondary and incidental findings (SF/IF) in cancer susceptibility genes (CSG), their clinical actionability and the psychological impact in individuals with an SF/IF (cases) compared with individuals tested due to their cancer history (controls). METHODS: This study analysed 533 exomes ordered for non-cancer conditions. Medical records were reviewed for clinical actionability of SF/IF. Psychological impact was analysed using the Multidimensional Impact of Cancer Risk Assessment (MICRA) scale and compared between cases and controls with a propensity score weighting method. RESULTS: The frequency of SF/IF in CSG was 2.1% (95% CI 1.1% to 3.8%): three BRCA2, three PMS2, two SDHB, and one each in BRCA1, MLH1 and RAD51C. Among the relatives, 18 were carriers. Twenty enrolled for surveillance, and a neoplasm was diagnosed in 20%: three paragangliomas and one breast cancer. Cases presented higher MICRA mean scores than controls (21.3 vs 16.2 in MICRA total score, 6.3 vs 4.2 in the distress subscale, and 8.3 vs 6.6 in the uncertainty subscale; all p<0.001). CONCLUSION: SF/IF in CSG were identified in 2.1% of patients. Despite a numerically higher psychological impact, the identification of SF/IF allowed early detection and cancer prevention in families without cancer history.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Humanos , Feminino , Sequenciamento do Exoma , Achados Incidentais , Neoplasias da Mama/genética , Genes BRCA2
4.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126042

RESUMO

Thyroid dyshormonogenesis (THD) is a heterogeneous group of genetic diseases caused by the total or partial defect in the synthesis or secretion of thyroid hormones. Genetic variants in DUOX2 can cause partial to total iodination organification defects and clinical heterogeneity, from transient to permanent congenital hypothyroidism. The aim of this study was to undertake a molecular characterization and genotype-phenotype correlation in patients with THD and candidate variants in DUOX2. A total of 31 (19.38%) patients from the Catalan Neonatal Screening Program presented with variants in DUOX2 that could explain their phenotype. Fifteen (48.39%) patients were compound heterozygous, 10 (32.26%) heterozygous, and 4 (12.90%) homozygous. In addition, 8 (26.67%) of these patients presented variants in other genes. A total of 35 variants were described, 10 (28.57%) of these variants have not been previously reported in literature. The most frequent variant in our cohort was c.2895_2898del/p.(Phe966SerfsTer29), classified as pathogenic according to reported functional studies. The final diagnosis of this cohort was permanent THD in 21 patients and transient THD in 10, according to reevaluation and/or need for treatment with levothyroxine. A clear genotype-phenotype correlation could not be identified; therefore, functional studies are necessary to confirm the pathogenicity of the variants.


Assuntos
Oxidases Duais , Estudos de Associação Genética , Humanos , Oxidases Duais/genética , Oxidases Duais/metabolismo , Feminino , Masculino , Recém-Nascido , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/patologia , Fenótipo , Mutação , Genótipo , Hipotireoidismo Congênito/genética , Triagem Neonatal , Tiroxina
5.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337518

RESUMO

Genetic defects in the TSH receptor (TSHR) can cause poor thyroid differentiation (thyroid dysgenesis) and/or thyroid malfunction (thyroid dyshormonogenesis). The phenotype spectrum is wide: from severe congenital hypothyroidism to mild hyperthyrotropinemia. Over 250 TSHR variants have been published, many uncharacterized in vitro. We aimed to genetically characterize patients with thyroid dyshormonogenesis with TSHR defects and to study in vitro the effect of the genetic variants to establish the genotype-phenotype relationship. Pediatric patients with thyroid dyshormonogenesis (160 patients, Catalan CH neonatal screening program, confirmation TSH range: 18.4-100 mIU/L), were analyzed by a high-throughput gene panel. In vitro studies measuring the TSH-dependent cAMP-response-element activation were performed. Five patients with mild or severe thyroid dyshormonogenesis presented six TSHR variants, two unpublished. Each variant showed a different in vitro functional profile that was totally or partially deleterious. Depending on the genotype, some of the variants showed partial deficiency in both genotypes, whereas others presented a different effect. In conclusion, the percentage of patients with thyroid dyshormonogenesis and candidate variants in TSHR is 3.13%. Our in vitro studies contributed to the confirmation of the pathogenicity of the variants and highlighted the importance of studying the effect of the patient's genotype for a correct diagnostic confirmation.


Assuntos
Receptores da Tireotropina , Disgenesia da Tireoide , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Hipotireoidismo Congênito/genética , Estudos de Associação Genética , Genótipo , Mutação , Fenótipo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Disgenesia da Tireoide/genética , Tireotropina/metabolismo , Tireotropina/sangue
6.
J Hum Genet ; 68(8): 527-532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36959467

RESUMO

RRM2B encodes the p53-inducible small subunit (p53R2) of ribonucleotide reductase, a key protein for mitochondrial DNA (mtDNA) synthesis. Pathogenic variants in this gene result in familial mitochondrial disease in adults and children, secondary to a maintenance disorder of mtDNA. This study describes two patients, mother and son, with early-onset chronic progressive external ophthalmoplegia (PEO). Skeletal muscle biopsy from the latter was examined: cytochrome c oxidase (COX)-negative fibres were shown, and molecular studies revealed multiple mtDNA deletions. A next-generation sequencing gene panel for nuclear-encoded mitochondrial maintenance genes identified two unreported heterozygous missense variants (c.514 G > A and c.682 G > A) in the clinically affected son. The clinically affected mother harboured the first variant in homozygous state, and the clinically unaffected father harboured the remaining variant in heterozygous state. In silico analyses predicted both variants as deleterious. Cell culture studies revealed that patients' skin fibroblasts, but not fibroblasts from healthy controls, responded to nucleoside supplementation with enhanced mtDNA repopulation, thus suggesting an in vitro functional difference in patients' cells. Our results support the pathogenicity of two novel RRM2B variants found in two patients with autosomal recessive PEO with multiple mtDNA deletions inherited with a pseudodominant pattern.


Assuntos
Oftalmoplegia Externa Progressiva Crônica , Oftalmoplegia , Ribonucleotídeo Redutases , Adulto , Criança , Humanos , Oftalmoplegia Externa Progressiva Crônica/genética , Oftalmoplegia Externa Progressiva Crônica/patologia , Padrões de Herança , DNA Mitocondrial/genética , Ribonucleotídeo Redutases/genética , Proteínas de Ciclo Celular/genética
7.
Clin Genet ; 103(4): 492-494, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36544354

RESUMO

Chronic progressive external ophthalmoplegia (CPEO) plus syndrome due to pathogenic biallelic variants in TOP3A gene has been described in only one single patient. We report two adult siblings with c.614A>G (p.Asp205Gly) homozygous missense variant in the TOP3A gene who had CPEO plus syndrome.


Assuntos
Oftalmoplegia Externa Progressiva Crônica , Oftalmoplegia , Adulto , Humanos , Oftalmoplegia Externa Progressiva Crônica/genética , Oftalmoplegia Externa Progressiva Crônica/patologia , Mutação de Sentido Incorreto , Homozigoto , Oftalmoplegia/genética , DNA Mitocondrial/genética
8.
J Med Genet ; 59(6): 605-612, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910934

RESUMO

BACKGROUND: A proportion of de novo variants in patients affected by genetic disorders, particularly those with autosomal dominant (AD) inheritance, could be the consequence of somatic mosaicism in one of the progenitors. There is growing evidence that germline and somatic mosaicism are more common and play a greater role in genetic disorders than previously acknowledged. In Marfan syndrome (MFS), caused by pathogenic variants in the fibrillin-1 gene (FBN1) gene, approximately 25% of the disease-causing variants are reported as de novo. Only a few cases of parental mosaicism have been reported in MFS. METHODS: Employing an amplicon-based deep sequencing (ADS) method, we carried out a systematic analysis of 60 parents of 30 FBN1 positive, consecutive patients with MFS with an apparently de novo pathogenic variant. RESULTS: Out of the 60 parents studied (30 families), the majority (n=51, 85%) had a systemic score of 0, seven had a score of 1 and two a score of 2, all due to minor criteria common in the normal population. We detected two families with somatic mosaicism in one of the progenitors, with a rate of 6.6% (2/30) of apparently de novo cases. CONCLUSIONS: The search for parental somatic mosaicism should be routinely implemented in de novo cases of MFS, to offer appropriate genetic and reproductive counselling as well as to reveal masked, isolated clinical signs of MFS in progenitors that may require specific follow-up.


Assuntos
Síndrome de Marfan , Fibrilina-1/genética , Humanos , Síndrome de Marfan/patologia , Mosaicismo , Mutação
9.
Dev Med Child Neurol ; 64(6): 743-752, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34988976

RESUMO

AIM: To correlate clinical, radiological, and biochemical features with genetic findings in children with bilateral basal ganglia lesions of unknown aetiology, and propose a diagnostic algorithm for early recognition. METHOD: Children with basal ganglia disease were recruited in a 2-year prospective multicentre study for clinical, biomarker, and genetic studies. Radiological pattern recognition was examined by hierarchical clustering analysis. RESULTS: We identified 22 genetic conditions in 30 out of 62 paediatric patients (37 males, 25 females; mean age at onset 2y, SD 3; range 0-10y; mean age at assessment 11y, range 1-25y) through gene panels (n=11), whole-exome sequencing (n=13), and mitochondrial DNA (mtDNA) sequencing (n=6). Genetic aetiologies included mitochondrial diseases (57%), Aicardi-Goutières syndrome (20%), and monogenic causes of dystonia and/or epilepsy (17%) mimicking Leigh syndrome. Radiological abnormalities included T2-hyperintense lesions (n=26) and lesions caused by calcium or manganese mineralization (n=9). Three clusters were identified: the pallidal, neostriatal, and striatal, plus the last including mtDNA defects in the oxidative phosphorylation system with prominent brain atrophy. Mitochondrial biomarkers showed poor sensitivity and specificity in children with mitochondrial disease, whereas interferon signature was observed in all patients with patients with Aicardi-Goutières syndrome. INTERPRETATION: Combined whole-exome and mtDNA sequencing allowed the identification of several genetic conditions affecting basal ganglia metabolism. We propose a diagnostic algorithm which prioritizes early use of next-generation sequencing on the basis of three clusters of basal ganglia lesions.


Assuntos
Doenças dos Gânglios da Base , Doenças Mitocondriais , Doenças Autoimunes do Sistema Nervoso , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/genética , Criança , Pré-Escolar , DNA Mitocondrial , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação , Malformações do Sistema Nervoso , Estudos Prospectivos
10.
J Genet Couns ; 30(3): 693-700, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33142000

RESUMO

Rare diseases (RDs) as a whole affect a huge number of individuals although each specific condition comprises a low number of individuals. As a consequence, funds allocated to expand research to all conditions are often limited. Several initiatives have emerged to invest more resources for research in RDs, but patients express unmet needs regarding educational initiatives, awareness support, and psychosocial resources. We developed an educational training program in the format of weekly sessions covering basic medical scientific knowledge and psychosocial aspects of RDs. The aim of this initiative was to assess its overall impact regarding knowledge, psychological issues, and participant satisfaction. Items were evaluated through surveys before and after the sessions. Here, we report the experience and impact of two editions of this initiative with a total of 37 participants. Our results show improvements in knowledge and better management of the psychological impact. Moreover, participants were able to exchange experiences and concerns, most of which were shared even though the RDs were different. Overall, the program was evaluated by the participants as a highly beneficial experience and all of them were interested in attending advanced editions.


Assuntos
Doenças Raras , Escolaridade , Humanos , Inquéritos e Questionários
11.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208592

RESUMO

Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.


Assuntos
DNA Mitocondrial , Mitocôndrias/genética , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/terapia , Animais , Terapia Combinada , Replicação do DNA , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
12.
FASEB J ; 33(6): 7168-7179, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848931

RESUMO

Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.


Assuntos
DNA Polimerase gama/deficiência , DNA Mitocondrial/metabolismo , Desoxirribonucleotídeos/farmacologia , Fibroblastos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adulto , Domínio Catalítico/genética , Células Cultivadas , DNA Polimerase gama/genética , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Desoxirribonucleotídeos/metabolismo , Etídio/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Genótipo , Humanos , Masculino , Mitocôndrias Musculares/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Mutação Puntual , Conformação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência
14.
J Cell Physiol ; 232(12): 3744-3761, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28177129

RESUMO

Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1-/- ) and Parp-2-/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1-/- , and Parp-2-/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1-/- and Parp-2-/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention.


Assuntos
Caquexia/etiologia , Neoplasias Pulmonares/complicações , Fibras Musculares Esqueléticas/enzimologia , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Animais , Apoptose , Biomarcadores/metabolismo , Caquexia/enzimologia , Caquexia/genética , Caquexia/patologia , Linhagem Celular Tumoral , Diafragma/enzimologia , Diafragma/patologia , Feminino , Genótipo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , NF-kappa B/metabolismo , Tamanho do Órgão , Fenótipo , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitinação
15.
Hum Mol Genet ; 24(1): 167-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25149473

RESUMO

Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Síndrome MELAS/genética , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , tRNA Metiltransferases/genética , Núcleo Celular/genética , Células Cultivadas , Regulação para Baixo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência de Leucina/metabolismo , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 182-187, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27613247

RESUMO

Leber's hereditary optic neuropathy (LHON) is a mitochondrial genetic disease characterized by bilateral acute or subacute progressive central visual loss. Most cases of LHON syndrome are caused by point mutations in the MT-ND1, MT-ND4, and MT-ND6 genes. Here, we report a novel homoplasmic mutation in the MT-ND1 gene (m.3634A>G, p.Ser110Gly) in a patient with the classical clinical features of LHON syndrome. Several observations support the idea that the mutation is pathogenic and involved in the clinical phenotype of the patient: 1) The mutation affected a highly conserved amino acid, 2) A pathogenic mutation in the same amino acid (m.3635G>A, p.Ser110Asn) was previously reported in a patient with LHON syndrome, 3) The mutation is not recorded in the Mitomap or Human Mitochondrial Genome Database, 4) In silico predictors classified the mutation as "probably damaging", and 5) Cybrids carrying the mutation showed decreased Complex I enzyme activity, lower cell proliferation, and decreased mitochondrial membrane potential relative to control cybrids.


Assuntos
NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Mutação Puntual , Adulto , Sequência de Aminoácidos , Animais , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Genes Mitocondriais , Humanos , Masculino , NADH Desidrogenase/química , Linhagem , Alinhamento de Sequência
17.
Nature ; 478(7367): 114-8, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979051

RESUMO

Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/patologia , Endodesoxirribonucleases/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose , Peso Corporal/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Respiração Celular , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Feminino , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Metabolismo dos Lipídeos , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Tamanho do Órgão/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Locos de Características Quantitativas/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
18.
J Cell Physiol ; 231(7): 1495-513, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26530247

RESUMO

Patients with chronic heart failure (CHF) experience exercise intolerance, fatigue and muscle wasting, which negatively influence their survival. We hypothesized that treatment with either the antioxidant N-acetyl cysteine (NAC) or the proteasome inhibitor bortezomib of rats with monocrotaline-induced CHF may restore inspiratory and limb muscle mass, function, and structure through several molecular mechanisms involved in protein breakdown and metabolism in the diaphragm and gastrocnemius. In these muscles of CHF-cachectic rats with and without treatment with NAC or bortezomib (N = 10/group) and non-cachectic controls, proteolysis (tyrosine release, proteasome activities, ubiquitin-proteasome markers), oxidative stress, inflammation, mitochondrial function, myosin, NF-κB transcriptional activity, muscle structural abnormalities, and fiber morphometry were analyzed together with muscle and cardiac functions. In diaphragm and gastrocnemius of CHF-cachectic rats, tyrosine release, proteasome activity, protein ubiquitination, atrogin-1, MURF-1, NF-κB activity, oxidative stress, inflammation, and structural abnormalities were increased, while muscle and cardiac functions, myosin content, slow- and fast-twitch fiber sizes, and mitochondrial activity were decreased. Concomitant treatment of CHF-cachectic rats with NAC or bortezomib improved protein catabolism, oxidative stress, inflammation, muscle fiber sizes, function and damage, superoxide dismutase and myosin levels, mitochondrial function (complex I, gastrocnemius), cardiac function and decreased NF-κB transcriptional activity in both muscles. Treatment of CHF-cachectic animals with NAC or bortezomib attenuated the functional (heart, muscles), biological, and structural alterations in muscles. Nonetheless, future studies conducted in actual clinical settings are warranted in order to assess the potential beneficial effects and safety concerns of these pharmacological agents on muscle mass loss and wasting in CHF-cachectic patients.


Assuntos
Acetilcisteína/administração & dosagem , Bortezomib/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Diafragma/patologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Humanos , Mitocôndrias/metabolismo , Monocrotalina/toxicidade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , NF-kappa B/metabolismo , Proteólise/efeitos dos fármacos , Ratos
19.
Brain ; 136(Pt 8): 2369-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23884809

RESUMO

Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA deletions than cytochrome c oxidase-positive cells (60.38±3.92% versus 45.18±2.83%). Survival of dopaminergic neurons in POLGD257A mice was associated with increased mitochondrial DNA copy number, enhanced mitochondrial cristae network, improved mitochondrial respiration, decreased exacerbation of mitochondria-derived reactive oxygen species, greater striatal dopamine levels and resistance to parkinsonian mitochondrial neurotoxins. These results indicate that primary accumulation of mitochondrial DNA deletions within substantia nigra pars compacta dopaminergic neurons, at an extent similar to that observed in patients with Parkinson's disease, do not kill dopaminergic neurons but trigger neuroprotective compensatory mechanisms at a mitochondrial level that may account for the high pathogenic threshold of mitochondrial DNA deletions in these cells.


Assuntos
Corpo Estriado/metabolismo , DNA Mitocondrial/genética , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo , Animais , Morte Celular/genética , Corpo Estriado/patologia , DNA Polimerase gama , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Neurônios Dopaminérgicos/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/patologia
20.
Brain ; 136(Pt 5): 1508-17, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23543484

RESUMO

In 2001, we reported linkage of an autosomal dominant form of limb-girdle muscular dystrophy, limb-girdle muscular dystrophy 1F, to chromosome 7q32.1-32.2, but the identity of the mutant gene was elusive. Here, using a whole genome sequencing strategy, we identified the causative mutation of limb-girdle muscular dystrophy 1F, a heterozygous single nucleotide deletion (c.2771del) in the termination codon of transportin 3 (TNPO3). This gene is situated within the chromosomal region linked to the disease and encodes a nuclear membrane protein belonging to the importin beta family. TNPO3 transports serine/arginine-rich proteins into the nucleus, and has been identified as a key factor in the HIV-import process into the nucleus. The mutation is predicted to generate a 15-amino acid extension of the C-terminus of the protein, segregates with the clinical phenotype, and is absent in genomic sequence databases and a set of >200 control alleles. In skeletal muscle of affected individuals, expression of the mutant messenger RNA and histological abnormalities of nuclei and TNPO3 indicate altered TNPO3 function. Our results demonstrate that the TNPO3 mutation is the cause of limb-girdle muscular dystrophy 1F, expand our knowledge of the molecular basis of muscular dystrophies and bolster the importance of defects of nuclear envelope proteins as causes of inherited myopathies.


Assuntos
Deleção de Genes , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , beta Carioferinas/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Linhagem , beta Carioferinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA