Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201785

RESUMO

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Mutantes/metabolismo , Mutação , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas Mutantes/genética , Domínios Proteicos , Ratos , alfa-Sinucleína/genética
2.
Neurobiol Dis ; 134: 104614, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605779

RESUMO

The G2019S substitution in the kinase domain of LRRK2 (LRRK2G2019S) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2G2019S are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2G2019S is sufficient to trigger degeneration or if the full length protein is required. To address this question, we generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2). A kinase activity that was increased by G2019➔S substitution could be detected in ΔLRRK2. However biochemical experiments suggested it did not bind or phosphorylate the substrate RAB10, in contrast to full length LRRK2. The overexpression of ΔLRRK2G2019S in the rat striatum using lentiviral vectors (LVs) offered a straightforward and simple way to investigate its effects in neurons in vivo. Results from a RT-qPCR array analysis indicated that ΔLRRK2G2019S led to significant mRNA expression changes consistent with a kinase-dependent mechanism. We next asked whether ΔLRRK2 could be sufficient to trigger neurodegeneration in the substantia nigra pars compacta (SNc) in adult rats. Six months after infection of the substantia nigra pars compacta (SNc) with LV-ΔLRRK2WT or LV-ΔLRRK2G2019S, the number of DA neurons was unchanged. To examine whether higher levels of ΔLRRK2G2019S could trigger degeneration we cloned ΔLRRK2 in AAV2/9 construct. As expected, AAV2/9 injected in the SNc led to neuronal expression of ΔLRRK2WT and ΔLRRK2G2019S at much higher levels than those obtained with LVs. Six months after injection, unbiased stereology showed that AAV-ΔLRRK2G2019S produced a significant ~30% loss of neurons positive for tyrosine hydroxylase- and for the vesicular dopamine transporter whereas AAV-ΔLRRK2WT did not. These findings show that overexpression of the C-terminal part of LRRK2 containing the mutant kinase domain is sufficient to trigger degeneration of DA neurons, through cell-autonomous mechanisms, possibly independent of RAB10.


Assuntos
Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Degeneração Neural/genética , Doença de Parkinson , Domínios Proteicos/genética , Animais , Técnicas de Transferência de Genes , Vetores Genéticos , Células HEK293 , Humanos , Lentivirus , Masculino , Mutação , Degeneração Neural/patologia , Parte Compacta da Substância Negra , Ratos , Ratos Sprague-Dawley
3.
Eur J Neurosci ; 49(3): 339-363, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30269383

RESUMO

Our understanding of the mechanisms underlying Parkinson's disease, the once archetypical nongenetic neurogenerative disorder, has dramatically increased with the identification of α-synuclein and LRRK2 pathogenic mutations. While α-synuclein protein composes the aggregates that can spread through much of the brain in disease, LRRK2 encodes a multidomain dual-enzyme distinct from any other protein linked to neurodegeneration. In this review, we discuss emergent datasets from multiple model systems that suggest these unlikely partners do interact in important ways in disease, both within cells that express both LRRK2 and α-synuclein as well as through more indirect pathways that might involve neuroinflammation. Although the link between LRRK2 and disease can be understood in part through LRRK2 kinase activity (phosphotransferase activity), α-synuclein toxicity is multilayered and plausibly interacts with LRRK2 kinase activity in several ways. We discuss common protein interactors like 14-3-3s that may regulate α-synuclein and LRRK2 in disease. Finally, we examine cellular pathways and outcomes common to both mutant α-synuclein expression and LRRK2 activity and points of intersection. Understanding the interplay between these two unlikely partners in disease may provide new therapeutic avenues for PD.


Assuntos
Encéfalo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos adversos , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/efeitos adversos , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA