Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 4(6): 4917-4924, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007040

RESUMO

Blood clots (90%) originate from the left atrial appendage (LAA) in non-valvular atrial fibrillation patients and are a major cause of embolic stroke. Long-term anticoagulation therapy has been used to prevent thrombus formation, but its use is limited in patients at a high risk for bleeding complications. Thus, left atrial appendage closure (LAAC) devices for LAA occlusion are well-established as an alternative to the anticoagulation therapy. However, the anticoagulation therapy is still required for at least 45 days post-implantation to bridge the time until complete LAA occlusion by neoendocardium coverage of the device. In this study, we applied an endothelium-mimicking nanomatrix to the LAAC device membrane for delivery of nitric oxide (NO) to enhance endothelialization, with the goal of possibly being able to reduce the duration of the anticoagulation therapy. The nanomatrix was uniformly coated on the LAAC device membranes and provided sustained release of NO for up to 1 month in vitro. In addition, the nanomatrix coating promoted endothelial cell proliferation and reduced platelet adhesion compared to the uncoated device membranes in vitro. The nanomatrix-coated and uncoated LAAC devices were then deployed in a canine LAA model for 22 days as a pilot study. All LAAC devices were not completely covered by neoendocardium 22 days post-implantation. However, histology image analysis showed that the nanomatrix-coated LAAC device had thicker neoendocardium coverage compared to the uncoated device. Therefore, our in vitro and in vivo results indicate that the nanomatrix coating has the potential to enhance endothelialization on the LAAC device membrane, which could improve patient outcomes by shortening the need for extended anticoagulation treatment.


Assuntos
Apêndice Atrial/cirurgia , Procedimentos Cirúrgicos Cardíacos/instrumentação , Endotélio/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Animais , Anticoagulantes/administração & dosagem , Aorta/citologia , Aspirina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Células Endoteliais/efeitos dos fármacos , Endotélio/fisiologia , Humanos , Membranas Artificiais , Óxido Nítrico/administração & dosagem , Peptídeos/administração & dosagem , Adesividade Plaquetária/efeitos dos fármacos , Varfarina/administração & dosagem
2.
Dev Comp Immunol ; 27(3): 217-31, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12590973

RESUMO

The cDNAs of rainbow trout and zebrafish eIF2alpha have been isolated and found to encode proteins of similar molecular weight and isoelectric point to the alpha-subunit of the human translational initiation factor, eIF2. The rainbow trout (36.0kDa) and zebrafish (36.2kDa) eIF2alphas share 93 and 91% identity to the human protein, respectively, and are recognized by antibodies raised to the human form. In mammals, the phosphorylation of the alpha-subunit of eIF2 plays a key role in the regulation of protein synthesis in response to a range of cellular stresses. Regions corresponding to the human phosphorylation and kinase-docking sites are identical in the proteins of both fish species, as are residues that interact with the eIF2 recycling factor, eIF2B. Moreover, both recombinant rainbow trout and zebrafish eIF2alphas can be phosphorylated in vitro by the mammalian heme-sensitive eIF2alpha-kinase, HRI/HCR, as well as the interferon-inducible, dsRNA sensitive kinase, PKR. Phosphorylation of rainbow trout and zebrafish eIF2alpha can also occur in vivo. RTG-2 and ZFL cells subjected to endoplasmic reticulum (ER) stress by treatment with the Ca(2+)-ionophore A23187 showed increased levels of eIF2alpha phosphorylation, suggesting similarity between the ER stress response in fish and other higher eukaryotes. Furthermore, RTG-2 cells responded to treatment with poly(I).poly(C) or to infection by infectious pancreatic necrosis virus, IPNV, by increasing eIF2alpha phosphorylation. These data imply that RTG-2 cells express the interferon-induced eIF2alpha-kinase, PKR and suggests that the interferon/eIF2alpha/PKR response to virus infection may be a conserved vertebrate characteristic. Overall these data are consistent with the premise that fish are able to regulate protein synthesis in response to cellular stresses through phosphorylation of eIF2alpha.


Assuntos
Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Vírus da Necrose Pancreática Infecciosa/patogenicidade , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/virologia , Peixe-Zebra/imunologia , Peixe-Zebra/virologia , Sequência de Aminoácidos , Animais , Calcimicina/farmacologia , Linhagem Celular , Clonagem Molecular , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Dados de Sequência Molecular , Fosforilação , Poli I-C/farmacologia , Estresse Fisiológico/metabolismo , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA