Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(37): 7899-7906, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39254190

RESUMO

While "black box" quantum chemical computations for the determination of rovibronic spectral data are not quite at hand, the present work utilizes the titular molecules to showcase how excited-state quantum chemical methods can be conjoined to quartic force field (QFF) anharmonic rovibrational treatments to provide novel and useful predictions for such data. This work employs hybrid QFFs with explicitly correlated coupled cluster theory along with the equation-of-motion formalism to generate harmonic force constants and time-dependent density functional theory (TD-DFT) to produce anharmonic force constants for the generation of electronically excited-state rovibrational spectral data, in effect, rovibronic spectral data. Specific spectroscopic results from this work show that the fundamental C═O stretch in phosgene as well as in cis- and trans-formic acid drop from the region of around 1800 cm-1 to close to 1100 cm-1 or less in the first excited states of each molecule. While such is expected for these n → π* excitations, this work provides quantitative predictions for these fundamental vibrational frequencies. The most notable theoretical result is that the TD-DFT-based QFFs can experience unexpected failures, and their inclusion in excited-state hybrid QFFs should require at least two functionals to be employed. The computation of DFT QFFs is relatively fast, and such a "doubling up" of the QFFs will not greatly increase the computational time.

2.
J Phys Chem A ; 127(22): 4771-4779, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37235692

RESUMO

Quartic force fields (QFFs) constructed using a sum of ground-state CCSD(T)-F12b energies with EOM-CCSD excitation energies are proposed for computation of spectroscopic properties of electronically excited states. This is dubbed the F12+EOM approach and is shown to provide similar accuracy to previous methodologies at lower computational cost. Using explicitly correlated F12 approaches instead of canonical CCSD(T), as in the corresponding (T)+EOM approach, allows for 70-fold improvement in computational time. The mean percent difference between the two methods for anharmonic vibrational frequencies is only 0.10%. A similar approach is also developed herein which accounts for core correlation and scalar relativistic effects, named F12cCR+EOM. The F12+EOM and F12cCR+EOM approaches both match to within 2.5% mean absolute error of experimental fundamental frequencies. These new methods should help in clarifying astronomical spectra by assigning features to vibronic and vibrational transitions of small astromolecules when such data are not available experimentally.

3.
Phys Chem Chem Phys ; 24(31): 18552-18558, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904881

RESUMO

High-level rovibrational characterization of methanediol, the simplest geminal diol, using state-of-the-art, purely ab initio techniques unequivocally confirms previously reported gas phase preparation of this simplest geminal diol in its C2 conformation. The F12-TZ-cCR and F12-DZ-cCR quartic force fields (QFFs) utilized in this work are among the largest coupled cluster-based anharmonic frequencies computed to date, and they match the experimental band origins of the spectral features in the 980-1100 cm-1 range to within 3 cm-1, representing a significant improvement over previous studies. The simulated spectrum also matches the experimental spectrum in the strong Q branch feature and qualitative shape of the 980-1100 cm-1 region. Additionally, the full set of rotational constants, anharmonic vibrational frequencies, and quartic and sextic distortion constants are provided for both the lowest energy C2 conformer as well as the slightly higher Cs conformer. Several vibrational modes have intensities of 60 km mol-1 or higher, facilitating potential astronomical or atmospheric detection of methanediol or further identification in laboratory work especially now that gas phase synthesis of this molecule has been established.

4.
J Chem Theory Comput ; 20(3): 1324-1336, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38230913

RESUMO

The quest for faster computation of anharmonic vibrational frequencies of both ground and excited electronic states has led to combining coupled cluster theory harmonic force constants with density functional theory cubic and quartic force constants for defining a quartic force field (QFF) utilized in conjunction with vibrational perturbation theory at second order (VPT2). This work shows that explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples levels [CCSD(T)-F12] provides accurate anharmonic vibrational frequencies and rotational constants when conjoined with any of B3LYP, CAM-B3LYP, BHandHLYP, PBE0, and ωB97XD for roughly one-quarter of the computational time of the CCSD(T)-F12 QFF alone for our test set. As the number of atoms in the molecule increases, however, the anharmonic terms become a greater portion of the QFF, and the cost comparison improves with HOCO+ and formic acid, requiring less than 15 and 10% of the time, respectively. In electronically excited states, PBE0 produces more consistently accurate results. Additionally, as the size of the molecule and, in turn, QFF increase, the cost savings for utilizing such a hybrid approach for both ground- and excited-state computations grows. As such, these methods are promising for predicting accurate rovibrational spectral properties for electronically excited states. In cases where well-behaved potentials for a small selection of targeted excited states are needed, such an approach should reduce the computational cost compared to that of methods requiring semiglobal potential surfaces or variational treatments of the rovibronic Hamiltonian. Such applications include spectral characterization of comets, exoplanets, or any situation in which gas phase molecules are being excited by UV-vis radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA