Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700495

RESUMO

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Assuntos
Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/farmacologia , Reprodutibilidade dos Testes
2.
J Proteome Res ; 18(1): 225-238, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30489082

RESUMO

The question whether and which nonhuman peptides or proteins are present in human milk was raised many decades ago. However, due to cross-reactivity or nonspecific antibody recognition, the accuracy of detection by immunochemical methods has been a concern. Additionally, the relative low-abundance of nonhuman peptides/proteins in the complex milk sample makes them a challenging target to detect. Here, by deep proteome profiling, we detected several nonhuman peptides, which could be grouped as nonhuman proteins. We next estimated their concentration in human milk by combining data-dependent shotgun proteomics and parallel reaction monitoring. First, we fractionated human milk at the protein level and were able to detect 1577 human proteins. Additionally, we identified 109 nonhuman peptides, of which 71 were grouped into 36 nonhuman proteins. In the next step, we targeted 37 nonhuman peptides and nine of them could be repeatedly quantified in human milk samples. Peptides/proteins originating from bovine milk products were the dominant nonhuman proteins observed, notably bovine caseins (α-S1-, α-S2-, ß-, κ-caseins) and ß-lactoglobulin. The method we present here can be expanded to investigate more about nonhuman peptides and proteins in human milk and give a better understanding of how human milk plays a role in allergy prevention.


Assuntos
Proteínas do Leite/análise , Leite Humano/química , Proteômica/métodos , Animais , Caseínas/análise , Bovinos , Humanos , Lactoglobulinas/análise , Peptídeos/análise
3.
J Proteome Res ; 16(2): 728-737, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28107008

RESUMO

Because of the low stoichiometry of protein phosphorylation, targeted enrichment prior to LC-MS/MS analysis is still essential. The trend in phosphoproteome analysis is shifting toward an increasing number of biological replicates per experiment, ideally starting from very low sample amounts, placing new demands on enrichment protocols to make them less labor-intensive, more sensitive, and less prone to variability. Here we assessed an automated enrichment protocol using Fe(III)-IMAC cartridges on an AssayMAP Bravo platform to meet these demands. The automated Fe(III)-IMAC-based enrichment workflow proved to be more effective when compared to a TiO2-based enrichment using the same platform and a manual Ti(IV)-IMAC-based enrichment workflow. As initial samples, a dilution series of both human HeLa cell and primary rat hippocampal neuron lysates was used, going down to 0.1 µg of peptide starting material. The optimized workflow proved to be efficient, sensitive, and reproducible, identifying, localizing, and quantifying thousands of phosphosites from just micrograms of starting material. To further test the automated workflow in genuine biological applications, we monitored EGF-induced signaling in hippocampal neurons, starting with only 200 000 primary cells, resulting in ∼50 µg of protein material. This revealed a comprehensive phosphoproteome, showing regulation of multiple members of the MAPK pathway and reduced phosphorylation status of two glutamate receptors involved in synaptic plasticity.


Assuntos
Cromatografia Líquida , Fosfopeptídeos/genética , Proteoma/genética , Espectrometria de Massas em Tandem , Animais , Células HeLa , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/metabolismo , Fosforilação/genética , Proteoma/metabolismo , Ratos
4.
Proteomics ; 16(15-16): 2193-205, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27219855

RESUMO

Hypothesis-driven MS-based targeted proteomics has gained great popularity in a relatively short timespan. Next to the widely established selected reaction monitoring (SRM) workflow, data-independent acquisition (DIA), also referred to as sequential window acquisition of all theoretical spectra (SWATH) was introduced as a high-throughput targeted proteomics method. DIA facilitates increased proteome coverage, however, does not yet reach the sensitivity obtained with SRM. Therefore, a well-informed method selection is crucial for designing a successful targeted proteomics experiment. This is especially the case when targeting less conventional peptides such as those that contain PTMs, as these peptides do not always adhere to the optimal fragmentation considerations for targeted assays. Here, we provide insight into the performance of DIA, SRM, and MRM cubed (MRM(3) ) in the analysis of phosphorylation dynamics throughout the phosphoinositide 3-kinase mechanistic target of rapamycin (PI3K-mTOR) and mitogen-activated protein kinase (MAPK) signaling network. We observe indeed that DIA is less sensitive when compared to SRM, however demonstrates increased flexibility, by postanalysis selection of alternative phosphopeptide precursors. Additionally, we demonstrate the added benefit of MRM(3) , allowing the quantification of two poorly accessible phosphosites. In total, targeted proteomics enabled the quantification of 42 PI3K-mTOR and MAPK phosphosites, gaining a so far unachieved in-depth view mTOR signaling events linked to tyrosine kinase inhibitor resistance in non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Humanos , Fosforilação , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
5.
Mol Syst Biol ; 11(1): 771, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25561571

RESUMO

In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Linhagem Celular Tumoral , Cromatografia de Afinidade , Cromatografia Líquida , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Espectrometria de Massas , Proteômica/métodos , Espectrometria de Massas em Tandem , Células U937
6.
Mol Cell Proteomics ; 13(12): 3421-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205225

RESUMO

Obstructive nephropathy is a frequently encountered situation in newborns. In previous studies, the urinary peptidome has been analyzed for the identification of clinically useful biomarkers of obstructive nephropathy. However, the urinary proteome has not been explored yet and should allow additional insight into the pathophysiology of the disease. We have analyzed the urinary proteome of newborns (n = 5/group) with obstructive nephropathy using label free quantitative nanoLC-MS/MS allowing the identification and quantification of 970 urinary proteins. We next focused on proteins exclusively regulated in severe obstructive nephropathy and identified Arginase 1 as a potential candidate molecule involved in the development of obstructive nephropathy, located at the crossroad of pro- and antifibrotic pathways. The reduced urinary abundance of Arginase 1 in obstructive nephropathy was verified in independent clinical samples using both Western blot and MRM analysis. These data were confirmed in situ in kidneys obtained from a mouse obstructive nephropathy model. In addition, we also observed increased expression of Arginase 2 and increased total arginase activity in obstructed mouse kidneys. mRNA expression analysis of the related arginase pathways indicated that the pro-fibrotic arginase-related pathway is activated during obstructive nephropathy. Taken together we have identified a new actor in the development of obstructive nephropathy in newborns using quantitative urinary proteomics and shown its involvement in an in vivo model of disease. The present study demonstrates the relevance of such a quantitative urinary proteomics approach with clinical samples for a better understanding of the pathophysiology and for the discovery of potential therapeutic targets.


Assuntos
Arginase/urina , Hidronefrose/urina , Rim/metabolismo , Proteoma/metabolismo , Insuficiência Renal/urina , Animais , Arginase/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Hidronefrose/congênito , Hidronefrose/patologia , Lactente , Recém-Nascido , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteoma/genética , Proteômica/métodos , Insuficiência Renal/congênito , Insuficiência Renal/patologia , Transdução de Sinais
7.
J Proteome Res ; 14(9): 3621-34, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26132440

RESUMO

In the framework of the C-HPP, our Franco-Swiss consortium has adopted chromosomes 2 and 14, coding for a total of 382 missing proteins (proteins for which evidence is lacking at protein level). Over the last 4 years, the French proteomics infrastructure has collected high-quality data sets from 40 human samples, including a series of rarely studied cell lines, tissue types, and sample preparations. Here we described a step-by-step strategy based on the use of bioinformatics screening and subsequent mass spectrometry (MS)-based validation to identify what were up to now missing proteins in these data sets. Screening database search results (85,326 dat files) identified 58 of the missing proteins (36 on chromosome 2 and 22 on chromosome 14) by 83 unique peptides following the latest release of neXtProt (2014-09-19). PSMs corresponding to these peptides were thoroughly examined by applying two different MS-based criteria: peptide-level false discovery rate calculation and expert PSM quality assessment. Synthetic peptides were then produced and used to generate reference MS/MS spectra. A spectral similarity score was then calculated for each pair of reference-endogenous spectra and used as a third criterion for missing protein validation. Finally, LC-SRM assays were developed to target proteotypic peptides from four of the missing proteins detected in tissue/cell samples, which were still available and for which sample preparation could be reproduced. These LC-SRM assays unambiguously detected the endogenous unique peptide for three of the proteins. For two of these, identification was confirmed by additional proteotypic peptides. We concluded that of the initial set of 58 proteins detected by the bioinformatics screen, the consecutive MS-based validation criteria led to propose the identification of 13 of these proteins (8 on chromosome 2 and 5 on chromosome 14) that passed at least two of the three MS-based criteria. Thus, a rigorous step-by-step approach combining bioinformatics screening and MS-based validation assays is particularly suitable to obtain protein-level evidence for proteins previously considered as missing. All MS/MS data have been deposited in ProteomeXchange under identifier PXD002131.


Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos Par 2 , Proteínas/genética , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Cromatografia Líquida , Humanos , Dados de Sequência Molecular , Proteínas/química
8.
J Proteome Res ; 13(6): 3027-37, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24804812

RESUMO

The proteasome is the main proteolytic system involved in intracellular proteins homeostasis in eukaryotes. Although the structure of proteasome complexes has been well characterized, the distribution of its activators and associated proteins are less studied. Here, we determine the composition and the stoichiometry of proteasome complexes and their associated proteins in a wide range of human cell lines using a one-step affinity purification method and a label-free quantitative proteomic approach. We show that proteasome complexes are highly dynamic protein assemblies, the activity of which being regulated at different levels by variations in the stoichiometry of bound regulators, in the composition of catalytic subunits and associated proteins, and in the rate of the 20S catalytic core complex assembly.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Linhagem Celular , Homeostase , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Peso Molecular , Complexo de Endopeptidases do Proteassoma/química , Mapas de Interação de Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Proteômica
9.
Gastroenterology ; 144(4): 771-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313268

RESUMO

BACKGROUND & AIMS: Glucose is absorbed into intestine cells via the sodium glucose transporter 1 (SGLT-1) and glucose transporter 2 (GLUT2); various peptides and hormones control this process. Apelin is a peptide that regulates glucose homeostasis and is produced by proximal digestive cells; we studied whether glucose modulates apelin secretion by enterocytes and the effects of apelin on intestinal glucose absorption. METHODS: We characterized glucose-related luminal apelin secretion in vivo and ex vivo by mass spectroscopy and immunologic techniques. The effects of apelin on (14)C-labeled glucose transport were determined in jejunal loops and in mice following apelin gavage. We determined levels of GLUT2 and SGLT-1 proteins and phosphorylation of AMPKα2 by immunoblotting. The net effect of apelin on intestinal glucose transepithelial transport was determined in mice. RESULTS: Glucose stimulated luminal secretion of the pyroglutaminated apelin-13 isoform ([Pyr-1]-apelin-13) in the small intestine of mice. Apelin increased specific glucose flux through the gastric epithelial barrier in jejunal loops and in vivo following oral glucose administration. Conversely, pharmacologic apelin blockade in the intestine reduced the increased glycemia that occurs following oral glucose administration. Apelin activity was associated with phosphorylation of AMPKα2 and a rapid increase of the GLUT2/SGLT-1 protein ratio in the brush border membrane. CONCLUSIONS: Glucose amplifies its own transport from the intestinal lumen to the bloodstream by increasing luminal apelin secretion. In the lumen, active apelin regulates carbohydrate flux through enterocytes by promoting AMPKα2 phosphorylation and modifying the ratio of SGLT-1:GLUT2. The glucose-apelin cycle might be pharmacologically handled to regulate glucose absorption and assess better control of glucose homeostasis.


Assuntos
Carboidratos/farmacocinética , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Análise de Variância , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Western Blotting , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Glucose/farmacologia , Transportador de Glucose Tipo 2/metabolismo , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Distribuição Aleatória , Valores de Referência , Transportador 1 de Glucose-Sódio/metabolismo
10.
Sci Rep ; 10(1): 14898, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913274

RESUMO

While blocking the renin angiotensin aldosterone system (RAAS) has been the main therapeutic strategy to control diabetic kidney disease (DKD) for many years, 25-30% of diabetic patients still develop the disease. In the present work we adopted a systems biology strategy to analyze glomerular protein signatures to identify drugs with potential therapeutic properties in DKD acting through a RAAS-independent mechanism. Glomeruli were isolated from wild type and type 1 diabetic (Ins2Akita) mice treated or not with the angiotensin-converting enzyme inhibitor (ACEi) ramipril. Ramipril efficiently reduced the urinary albumin/creatine ratio (ACR) of Ins2Akita mice without modifying DKD-associated renal-injuries. Large scale quantitative proteomics was used to identify the DKD-associated glomerular proteins (DKD-GPs) that were ramipril-insensitive (RI-DKD-GPs). The raw data are publicly available via ProteomeXchange with identifier PXD018728. We then applied an in silico drug repurposing approach using a pattern-matching algorithm (Connectivity Mapping) to compare the RI-DKD-GPs's signature with a collection of thousands of transcriptional signatures of bioactive compounds. The sesquiterpene lactone parthenolide was identified as one of the top compounds predicted to reverse the RI-DKD-GPs's signature. Oral treatment of 2 months old Ins2Akita mice with dimethylaminoparthenolide (DMAPT, a water-soluble analogue of parthenolide) for two months at 10 mg/kg/d by gavage significantly reduced urinary ACR. However, in contrast to ramipril, DMAPT also significantly reduced glomerulosclerosis and tubulointerstitial fibrosis. Using a system biology approach, we identified DMAPT, as a compound with a potential add-on value to standard-of-care ACEi-treatment in DKD.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Sesquiterpenos/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Conectoma/métodos , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Taxa de Filtração Glomerular , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Renina-Angiotensina/efeitos dos fármacos
11.
Sci Rep ; 7: 41163, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120925

RESUMO

Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.


Assuntos
Antioxidantes/farmacologia , Fibroblastos/efeitos dos fármacos , Hélio/farmacologia , Queratinócitos/efeitos dos fármacos , Gases em Plasma/farmacologia , Apoptose , Linhagem Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Pressão , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA