Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629703

RESUMO

The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacologia , Humanos , Animais , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Ínsulas Olfatórias/efeitos dos fármacos , Ínsulas Olfatórias/metabolismo , Neurogênese/efeitos dos fármacos
2.
Mol Psychiatry ; 27(4): 2329-2339, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246636

RESUMO

Silencing of dopamine transporter (DAT), a main controlling factor of dopaminergic signaling, results in biochemical and behavioral features characteristic for neuropsychiatric diseases with presumed hyperdopaminergia including schizophrenia, attention deficit hyperactivity disorder (ADHD), bipolar disorder, and obsessive-compulsive disorder (OCD). Investigation of DAT silencing thus provides a transdiagnostic approach towards a systems-level understanding of common underlying pathways. Using a high-field multimodal imaging approach and a highly sensitive cryogenic coil, we integrated structural, functional and metabolic investigations in tandem with behavioral assessments on a newly developed preclinical rat model, comparing DAT homozygous knockout (DAT-KO, N = 14), heterozygous knockout (N = 8) and wild-type male rats (N = 14). We identified spatially distributed structural and functional brain alterations encompassing motor, limbic and associative loops that demonstrated strong behavioral relevance and were highly consistent across imaging modalities. DAT-KO rats manifested pronounced volume loss in the dorsal striatum, negatively correlating with cerebellar volume increase. These alterations were associated with hyperlocomotion, repetitive behavior and loss of efficient functional small-world organization. Further, prefrontal and midbrain regions manifested opposite changes in functional connectivity and local network topology. These prefrontal disturbances were corroborated by elevated myo-inositol levels and increased volume. To conclude, our imaging genetics approach provides multimodal evidence for prefrontal-midbrain decoupling and striato-cerebellar neuroplastic compensation as two key features of constitutive DAT blockade, proposing them as transdiagnostic mechanisms of hyperdopaminergia. Thus, our study connects developmental DAT blockade to systems-level brain changes, underlying impaired action inhibition control and resulting in motor hyperactivity and compulsive-like features relevant for ADHD, schizophrenia and OCD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipercinese/metabolismo , Masculino , Mesencéfalo/metabolismo , Ratos
3.
J Neural Transm (Vienna) ; 130(9): 1195-1205, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36943505

RESUMO

Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharmacological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of monoaminergic circuits and hypothalamus-pituitary-adrenal axis-the key pathophysiological pathways of mood disorders. Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better understand sex-specific effects of KD on mental health.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Dieta Cetogênica , Epilepsia , Animais , Feminino , Masculino , Modelos Animais
4.
Pharmacol Res ; 196: 106917, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690532

RESUMO

As depression is projected to become the leading mental disease burden globally by 2030, understanding the underlying pathology, as well as screening potential anti-depressants with a higher efficacy, faster onset of action, and/or fewer side-effects is essential. A commonly used test for screening novel antidepressants and studying depression-linked aspects in rodents is the Porsolt Forced Swim Test. The present systematic mappping review gives a comprehensive overview of the evolution and of the most prevalently used set-ups of this test in rats, including the choice of animals (strain, sex, and age), technical aspects of protocol and environment, as well as reported outcome measures. Additionally, we provide an accessible list of all existing publications, to support informed decision-making for procedural and technical aspects of the test, to thereby enhance reproducibility and comparability. This should further contribute to reducing the number of unnecessarily replicated experiments, and consequently, reduce the number of animals used in future.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37934233

RESUMO

S-ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and psilocybin, a 5-hydroxy-tryptamine (serotonin) 2A receptor (5-HT2AR) agonist, are reported as effective rapid-acting antidepressants. Both compounds increase glutamate signalling and evoke cortical hyperexcitation. S-ketamine induces neurotoxicity especially in the retrosplenial cortex (Olney's lesions). Whether psilocybin produces similar neurotoxic effects has so far not been investigated. We performed an immunohistochemical whole-brain mapping for heat shock protein 70 (HSP70) in rats treated with psilocybin, S-ketamine, and MK-801. In contrast to S-ketamine- and MK-801-treated animals, we did not detect any HSP70-positive neurons in retrosplenial cortex of rats treated with psilocybin. Our results suggest that psilocybin might be safer for clinical use compared to S-ketamine regarding neuronal damage.

6.
Proc Natl Acad Sci U S A ; 117(3): 1753-1761, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896584

RESUMO

Carbon dioxide (CO2), the major product of metabolism, has a strong impact on cerebral blood vessels, a phenomenon known as cerebrovascular reactivity. Several vascular risk factors such as hypertension or diabetes dampen this response, making cerebrovascular reactivity a useful diagnostic marker for incipient vascular pathology, but its functional relevance, if any, is still unclear. Here, we found that GPR4, an endothelial H+ receptor, and endothelial Gαq/11 proteins mediate the CO2/H+ effect on cerebrovascular reactivity in mice. CO2/H+ leads to constriction of vessels in the brainstem area that controls respiration. The consequential washout of CO2, if cerebrovascular reactivity is impaired, reduces respiration. In contrast, CO2 dilates vessels in other brain areas such as the amygdala. Hence, an impaired cerebrovascular reactivity amplifies the CO2 effect on anxiety. Even at atmospheric CO2 concentrations, impaired cerebrovascular reactivity caused longer apneic episodes and more anxiety, indicating that cerebrovascular reactivity is essential for normal brain function. The site-specific reactivity of vessels to CO2 is reflected by regional differences in their gene expression and the release of vasoactive factors from endothelial cells. Our data suggest the central nervous system (CNS) endothelium as a target to treat respiratory and affective disorders associated with vascular diseases.


Assuntos
Ansiedade/metabolismo , Sistema Cardiovascular/metabolismo , Endotélio/metabolismo , Transtornos Respiratórios/metabolismo , Tonsila do Cerebelo , Animais , Arteríolas/patologia , Encéfalo/fisiologia , Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Endotélio/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Hipercapnia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Respiração , Fatores de Risco , Transdução de Sinais
7.
Learn Mem ; 29(2): 55-70, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35042829

RESUMO

Differences in the learning associated transcriptional profiles between mouse strains with distinct learning abilities could provide insight into the molecular basis of learning and memory. The inbred mouse strain DBA/2 shows deficits in hippocampus-dependent memory, yet the transcriptional responses to learning and the underlying mechanisms of the impairments are unknown. Comparing DBA/2J mice with the reference standard C57BL/6N mouse strain we verify an enhanced susceptibility to kainic acid induced seizures, confirm impairments in hippocampus-dependent spatial memory tasks and uncover additional behavioral abnormalities including deficits in hippocampus-independent learning. Surprisingly, we found no broad dysfunction of the DBA/2J strain in immediate early gene (IEG) activation but instead report brain region-specific and gene-specific alterations. The learning-associated IEGs Arc, c-Fos, and Nr4a1 showed no DBA/2J deficits in basal or synaptic activity induced gene expression in hippocampal or cortical primary neuronal cultures or in the CA1, CA3, or retrosplenial cortex following spatial object recognition (SOR) training in vivo. However, the parietal cortex showed reduced and the dentate gyrus showed enhanced SOR-evoked induction of most IEGs. All DBA/2J hippocampal regions exhibited elevated basal expression of inhibin ß A (Inhba) and a learning-associated superinduction of the transcription factor neuronal Per-Arnt-Sim domain protein 4 (Npas4) known to regulate the synaptic excitation-inhibition balance. In line with this, CA1 pyramidal neurons of DBA/2J mice showed fewer inhibitory and more excitatory miniature postsynaptic currents but no alteration in most other electrophysiological properties or gross dendritic morphology. The dysregulation of Npas4 and Inhba expression and synaptic connectivity may underlie the cognitive deficits and increased susceptibility to seizures of DBA/2J mice.


Assuntos
Cognição , Hipocampo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Subunidades beta de Inibinas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
8.
Basic Res Cardiol ; 117(1): 44, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068417

RESUMO

Myocardial infarction (MI) with subsequent depression is associated with increased cardiac mortality. Impaired central mineralocorticoid (MR) and glucocorticoid receptor (GR) equilibrium has been suggested as a key mechanism in the pathogenesis of human depression. Here, we investigate if deficient central MR/GR signaling is causative for a poor outcome after MI in mice. Mice with an inducible forebrain-specific MR/GR knockout (MR/GR-KO) underwent baseline and follow-up echocardiography every 2 weeks after MI or sham operation. Behavioral testing at 4 weeks confirmed significant depressive-like behavior and, strikingly, a higher mortality after MI, while cardiac function and myocardial damage remained unaffected. Telemetry revealed cardiac autonomic imbalance with marked bradycardia and ventricular tachycardia (VT) upon MI in MR/GR-KO. Mechanistically, we found a higher responsiveness to atropine, pointing to impaired parasympathetic tone of 'depressive' mice after MI. Serum corticosterone levels were increased but-in line with the higher vagal tone-plasma and cardiac catecholamines were decreased. MR/GR deficiency in the forebrain led to significant depressive-like behavior and a higher mortality after MI. This was accompanied by increased vagal tone, depleted catecholaminergic compensatory capacity and VTs. Thus, limbic MR/GR disequilibrium may contribute to the impaired outcome of depressive patients after MI and possibly explain the lack of anti-depressive treatment benefit.


Assuntos
Depressão , Infarto do Miocárdio , Animais , Humanos , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Prosencéfalo/metabolismo , Receptores de Glucocorticoides/metabolismo
9.
Int J Neuropsychopharmacol ; 25(11): 946-950, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974297

RESUMO

Rapastinel, formerly Glyx-13, is a novel positive allosteric modulator of the N-methyl-D-aspartate-receptor (NMDAR) that counteracts psychotomimetic actions of NMDAR antagonists. We set out to evaluate the effect of rapastinel alone or in combination with the global and GluN2B subunit-specific NMDAR antagonists MK-801 and Ro25-6981, respectively, on neuronal activation in relevant regions using c-fos brain mapping. Whereas rapastinel alone did not trigger significant c-fos expression beyond the prelimbic cortex, it strongly increased the c-fos expression induced by MK-801 in hippocampal, cingulate, and retrosplenial areas. Similar results were obtained when rapastinel was replaced by D-cycloserine. Our results reveal new interactions at network level between NMDAR modulators with possible implications regarding their therapeutic effects.


Assuntos
Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antidepressivos/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo
10.
Nervenarzt ; 93(3): 223-233, 2022 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-34766186

RESUMO

Rapid-acting antidepressants disprove the dogma that antidepressants need several weeks to become clinically effective. Ketamine, the prototype of a rapid-acting antidepressant, is an N­methyl-D-aspartate (NMDA) receptor blocking agent. A single i.v. application of ketamine induces rapid changes in glutamatergic neurotransmitter systems, leading to preferential activation of glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This evokes the activation of brain-derived neurotrophic factor (BDNF), causing plastic changes in the central nervous system within 24 h. In the prefrontal cortex ketamine leads to a regeneration of synaptic contacts, which have been damaged by chronic stress. This regeneration correlates with improvement of depression-like behavioral changes in rodent models. Classical monoaminergic antidepressants can cause similar changes but with considerably longer latency periods. For clinical application a nasal spray of esketamine has been developed, since this enantiomer has the highest affinity for NMDA receptors; however, since R­ketamine and certain ketamine metabolites also have antidepressant effects in preclinical models, these are currently being tested in clinical studies. Moreover, there are many other glutamatergic substances under clinical investigation for antidepressant effects without ketamine-like adverse effects. In addition, there are also several promising rapid-acting antidepressants that do not primarily act via the glutamate system, such as the gamma-aminobutyric acid (GABA) receptor modulator brexanolone or the serotonin receptor agonist psilocybin.


Assuntos
Antidepressivos , Depressão , Antidepressivos/farmacologia , Sistema Nervoso Central , Neurobiologia , Receptores de N-Metil-D-Aspartato
11.
Exp Brain Res ; 239(10): 2999-3005, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34331083

RESUMO

Recent animal and human studies connected the Morc family CW-type zinc finger 1 (Morc1) gene with early life stress and depression. Moreover, the Morc superfamily is related to epigenetic regulation in diverse nuclear processes. So far, the Morc1 gene was mainly studied in spermatogenesis, whereas its distribution and function in the brain are still unknown. In a first attempt to characterize Morc1 in the brain, we performed a Western Blot analysis as well as a real-time PCR analysis during different stages of development. Additionally, we detected Morc1 mRNA using real-time PCR in different mood-regulating brain areas in adult rats. We found that MORC1 protein as well as Morc1 mRNA is already expressed in the brain at embryonic day 14 and is stably expressed until adulthood. Furthermore, Morc1 mRNA is present in many important brain areas of mood regulation like the medial prefrontal cortex, the nucleus accumbens, the hippocampus, the hypothalamus, and the amygdala. The ample distribution in the brain and its molecular structure as a zinc finger protein indicate that Morc1 might act as a transcription factor. This function and its expression in mood-regulating areas already in the early brain development turn Morc1 into a possible candidate gene for mediating early life stress and depression.


Assuntos
Epigênese Genética , Fatores de Transcrição , Animais , Encéfalo , Hipocampo , Masculino , RNA Mensageiro , Ratos
12.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1587-1591, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32789675

RESUMO

Rapastinel is a novel psychoactive substance that acts as an N-methyl-D-aspartate-receptor (NMDAR) agonist and triggers antidepressant- and antipsychotic-like effects in animal models. However, it is unknown if rapastinel possesses a better side-effect profile than fast-acting glutamatergic antidepressants, like ketamine, which trigger neurotoxicity in the perinatal rodent cortex and protracted schizophrenia-like alterations. Here we found a remarkable neuroprotective effect of rapastinel against apoptosis induced by the NMDAR antagonist MK-801 in comparison to that elicited by clozapine and the mGlu2/3 agonist LY354740. These results suggest the potential therapeutic/prophylactic effect of rapastinel in ameliorating deleterious effects induced by NMDAR blockade during neurodevelopment.


Assuntos
Córtex Cerebral , Fármacos Neuroprotetores , Oligopeptídeos , Receptores de N-Metil-D-Aspartato , Animais , Córtex Cerebral/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Pharmacopsychiatry ; 54(5): 205-213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33592642

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) exerts its effects on neural plasticity via 2 distinct receptor types, the tyrosine kinase TrkB and the p75 neurotrophin receptor (p75NTR). The latter can promote inflammation and cell death while TrkB is critically involved in plasticity and memory, particularly in the hippocampus. Acute and chronic stress have been associated with suppression of hippocampal BDNF expression and impaired hippocampal plasticity. We hypothesized that p75NTR might be involved in the hippocampal stress response, in particular in stress-induced BDNF suppression, which might be accompanied by increased neuroinflammation. METHOD: We assessed hippocampal BDNF protein concentrations in wild-type mice compared that in mice lacking the long form of the p75NTR (p75NTRExIII-/-) with or without prior exposure to a 1-hour restraint stress challenge. Hippocampal BDNF concentrations were measured using an optimized ELISA. Furthermore, whole-brain mRNA expression of pro-inflammatory interleukin-6 (Il6) was assessed with RT-PCR. RESULTS: Deletion of full-length p75NTR was associated with higher hippocampal BDNF protein concentration in the stress condition, suggesting persistently high hippocampal BDNF levels in p75NTR-deficient mice, even under stress. Stress elicited increased whole-brain Il6 mRNA expression irrespective of genotype; however, p75NTRExIII-/- mice showed elevated baseline Il6 expression and thus a lower relative increase. CONCLUSIONS: Our results provide evidence for a role of p75NTR signaling in the regulation of hippocampal BDNF levels, particularly under stress. Furthermore, p75NTR signaling modulates baseline but not stress-related Il6 gene expression in mice. Our findings implicate p75NTR signaling as a potential pathomechanism in BDNF-dependent modulation of risk for neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor de Fator de Crescimento Neural , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
14.
PLoS Biol ; 15(6): e2000936, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28604818

RESUMO

Behavioral experiments are usually designed to tap into a specific cognitive function, but animals may solve a given task through a variety of different and individual behavioral strategies, some of them not foreseen by the experimenter. Animal learning may therefore be seen more as the process of selecting among, and adapting, potential behavioral policies, rather than mere strengthening of associative links. Calcium influx through high-voltage-gated Ca2+ channels is central to synaptic plasticity, and altered expression of Cav1.2 channels and the CACNA1C gene have been associated with severe learning deficits and psychiatric disorders. Given this, we were interested in how specifically a selective functional ablation of the Cacna1c gene would modulate the learning process. Using a detailed, individual-level analysis of learning on an operant cue discrimination task in terms of behavioral strategies, combined with Bayesian selection among computational models estimated from the empirical data, we show that a Cacna1c knockout does not impair learning in general but has a much more specific effect: the majority of Cacna1c knockout mice still managed to increase reward feedback across trials but did so by adapting an outcome-based strategy, while the majority of matched controls adopted the experimentally intended cue-association rule. Our results thus point to a quite specific role of a single gene in learning and highlight that much more mechanistic insight could be gained by examining response patterns in terms of a larger repertoire of potential behavioral strategies. The results may also have clinical implications for treating psychiatric disorders.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Condicionamento Operante , Aprendizagem por Discriminação , Comportamento Exploratório , Modelos Psicológicos , Algoritmos , Animais , Teorema de Bayes , Comportamento Animal , Canais de Cálcio Tipo L/genética , Comportamento de Escolha , Biologia Computacional , Sinais (Psicologia) , Retroalimentação Psicológica , Heurística , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Reforço Psicológico , Recompensa
15.
Nervenarzt ; 91(3): 233-242, 2020 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-30976829

RESUMO

The treatment of psychotic disorders and illnesses is a challenge for therapists and institutions due to the heterogeneity of the cause and course, refractory symptoms, lack of therapy adherence and high rates of relapse. These circumstances can be effectively counteracted by the flexibility of therapeutic approaches and settings. A useful but rarely used concept is the treatment of psychoses within the so-called track unit. A track unit is defined as a syndrome-oriented, decentralized, modular unit, adjusted to the patient's individual stage-specific needs across both inpatient and outpatient sectors. The track concept offers a fully integrated sector-spanning model of treatment at all stages of psychotic illnesses as well as a continuity of treatment. Another important goal is the early availability of timely treatment for as many psychotic patients as possible so that the symptoms can be alleviated as soon as possible and the quality of life can be sustainably improved or preserved. The track concept not only improves the current situation of treatment for acutely or chronically psychotic patients but also represents a necessary investment in the future. This treatment model aims to ensure that the good but complex and costly treatment options are available to patients even if inpatient treatment is not favored by the patient.


Assuntos
Assistência Centrada no Paciente , Transtornos Psicóticos , Qualidade de Vida , Hospitalização , Humanos , Pacientes Ambulatoriais , Transtornos Psicóticos/terapia
16.
Neurobiol Dis ; 118: 9-21, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29933054

RESUMO

Psychiatric comorbidities are prevalent in patients with epilepsy and greatly contribute to the overall burden of disease. The availability of reliable biomarkers to diagnose epilepsy-associated comorbidities would allow for effective treatment and improved disease management. Due to their non-invasive nature, molecular imaging techniques such as positron emission tomography (PET) are ideal tools to measure pathologic changes. In the current study we investigated the potential of [18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine ([18F]MPPF) as imaging correlates of neurobehavioral comorbidities in the pilocarpine rat model of epilepsy. Findings from rats with epilepsy revealed a regional reduction in [18F]FDG uptake indicating thalamic hypometabolism. In addition, an increase in septal [18F]MPPF binding was observed in rats with spontaneous recurrent seizures. Both thalamic [18F]FDG and septal [18F]MPPF data proved to correlate with behavioral alterations including decreases in luxury behavior such as burrowing and social interaction, and changes in behavioral patterns in anxiety tests. A correlation with seizure frequency was confirmed for thalamic [18F]FDG data. Moreover, thalamic [18F]FDG and septal [18F]MPPF data exhibited a correlation with brain-derived neurotrophic factor (BDNF) serum concentrations, which were lowered in rats with epilepsy. In conclusion, µPET data from rats with pilocarpine-induced epileptogenesis indicate altered septal 5-HT1A receptor binding. Further research is necessary assessing whether septal 5-HT1A receptor binding may serve as an imaging correlate of neuropsychiatric comorbidities in epilepsy patients and for severity assessment in rodent epilepsy models. In contrast, we obtained evidence that [18F]FDG uptake also reflects the severity of epilepsy and, thus, might not constitute a biomarker with sufficient specificity for psychiatric comorbidities. Evidence has been obtained that BDNF might serve as a peripheral circulatory biomarker. Further experimental and clinical assessment is necessary for validation of the marker candidates.


Assuntos
Epilepsia/induzido quimicamente , Epilepsia/diagnóstico por imagem , Relações Interpessoais , Pilocarpina/toxicidade , Tomografia por Emissão de Pósitrons/métodos , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Feminino , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo
17.
Epilepsia ; 59(4): 765-777, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479675

RESUMO

OBJECTIVE: Rodent epilepsy models can significantly contribute to our understanding of pathophysiological mechanisms and to validation of biomarker and target candidates. Evidence-based severity assessment is a presupposition for the ethical evaluation of animal experimentation allowances as well as for the development of efficacious refinement concepts. METHODS: Aiming to improve our understanding of the impact of experimental procedures and repeated seizures, we have completed a comprehensive behavioral and biochemical analysis assessing various parameters that can inform about the influence of an electrical kindling paradigm on well-being in rats. Thereby, we have focused on the immediate effects of phases with focal and generalized seizures with behavioral testing during kindling acquisition. RESULTS: Electrode implantation exerted mild effects on anxiety-associated behavior and reduced serum corticosterone at 3 weeks, but not 7 weeks, following surgery. Analysis in kindled rats excluded any relevant impact of focal seizures on behavioral and biochemical parameters. Assessment in rats with generalized seizures revealed an impact on nest complexity scores, nest soiling, and selected parameters in paradigms evaluating anxiety-associated behavior. Moreover, serum corticosterone levels, but neither hair corticosterone nor fecal corticosterone metabolite concentrations were lowered as a consequence of repeated generalized seizures. The assessment of various other behavioral and biochemical parameters did not reveal any other relevant effects of generalized seizures. Cross-correlation analysis suggested that assessment of nest building and maintenance can provide information comparable to that from more elaborate behavioral assays. This finding provides first evidence that nest scoring might serve as a simple and valid approach to evaluate rat well-being during routine assessment schemes. SIGNIFICANCE: The findings argue against a persistent level of pronounced distress and suggest a classification of the kindling paradigm as a model with moderate severity based on a longer-lasting mild impact on animal behavioral patterns. This suggestion provides a basis for a prospective and retrospective case-by-case severity assessment.


Assuntos
Modelos Animais de Doenças , Relações Interpessoais , Excitação Neurológica/fisiologia , Convulsões/fisiopatologia , Índice de Gravidade de Doença , Animais , Eletrodos Implantados , Feminino , Ratos , Ratos Sprague-Dawley , Convulsões/psicologia
18.
Epilepsia ; 59(12): 2194-2205, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370531

RESUMO

OBJECTIVE: In patients with epilepsy, psychiatric comorbidities can significantly affect the disease course and quality of life. Detecting and recognizing these comorbidities is central in determining an optimal treatment plan. One promising tool in detecting biomarkers for psychiatric comorbidities in epilepsy is positron emission tomography (PET). METHODS: Behavioral and biochemical variables were cross-correlated with the results from two µPET scans using the tracers [18 F]fluoro-2-deoxy-D-glucose ([18 F]FDG) and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18 F-fluoro-benzamidoethylpiperazine ([18 F]MPPF) to explore potential biomarkers for neurobehavioral comorbidities in an electrically induced post-status epilepticus rat model of epilepsy. RESULTS: In rats with epilepsy, µPET analysis revealed a local reduction in hippocampal [18 F]FDG uptake, and a local increase in [18 F]MPPF binding. These changes exhibited a correlation with burrowing as a "luxury" behavior, social interaction, and anxiety-associated behavioral patterns. Interestingly, hippocampal [18 F]FDG uptake did not correlate with spontaneous recurrent seizure activity. SIGNIFICANCE: In the electrically induced post-status epilepticus rat model, we demonstrated hippocampal hypometabolism and its correlation with a range of neurobehavioral alterations. These findings require further confirmation in other preclinical models and patients with epilepsy and psychiatric disorders to address the value of [18 F]FDG uptake as an imaging biomarker candidate for psychiatric comorbidities in patients as well as for severity assessment in rodent epilepsy models.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/psicologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Biomarcadores , Eletrodos Implantados , Eletrochoque , Feminino , Fluordesoxiglucose F18 , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Comportamento de Nidação , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Comportamento Social , Estado Epiléptico/metabolismo
19.
Eur Arch Psychiatry Clin Neurosci ; 268(8): 861-864, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30019210

RESUMO

Compounds targeting serotonin (5-HT) are widely used as antidepressants. However, the role of 5-HT in mediating the effects of electroconvulsive seizure (ECS) therapy remains undefined. Using Tph2-/- mice depleted of brain 5-HT, we studied the effects of ECS on behavior and neurobiology. ECS significantly prolonged the start latency in the elevated O-Maze test, an effect that was abolished in Tph2-/- mice. Furthermore, in the absence of 5-HT, the ECS-induced increase in adult neurogenesis and in brain-derived neurotrophic factor signaling in the hippocampus were significantly reduced. Our results indicate that brain 5-HT critically contributes to the neurobiological responses to ECS.


Assuntos
Encéfalo/metabolismo , Eletroconvulsoterapia/métodos , Convulsões/terapia , Serotonina/metabolismo , Animais , Bromodesoxiuridina/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Convulsões/genética , Estatísticas não Paramétricas , Natação/psicologia , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/genética
20.
Eur Arch Psychiatry Clin Neurosci ; 268(1): 77-87, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27581816

RESUMO

The evidence underlying the so-called glutamatergic hypothesis ranges from NMDA receptor hypofunction to an imbalance between excitatory and inhibitory circuits in specific brain structures. Among all glutamatergic system components, metabotropic receptors play a main role in regulating neuronal excitability and synaptic plasticity. Here, we investigated, using qRT-PCR and western blot, consequences in the hippocampus and prefrontal/frontal cortex (PFC/FC) of mice with a genetic deletion of the metabotropic glutamate receptor 5 (mGlu5), addressing key components of the GABAergic and glutamatergic systems. We found that mGlu5 knockout (KO) mice showed a significant reduction of reelin, GAD65, GAD67 and parvalbumin mRNA levels, which is specific for the PFC/FC, and that is paralleled by a significant reduction of protein levels in male KO mice. We next analyzed the main NMDA and AMPA receptor subunits, namely GluN1, GluN2A, GluN2B and GluA1, and we found that mGlu5 deletion determined a significant reduction of their mRNA levels, also within the hippocampus, with differences between the two genders. Our data suggest that neurochemical abnormalities impinging the glutamatergic and GABAergic systems may be responsible for the behavioral phenotype associated with mGlu5 KO animals and point to the close interaction of these molecular players for the development of neuropsychiatric disorders such as schizophrenia. These data could contribute to a better understanding of the involvement of mGlu5 alterations in the molecular imbalance between excitation and inhibition underlying the emergence of a schizophrenic-like phenotype and to understand the potential of mGlu5 modulators in reversing the deficits characterizing the schizophrenic pathology.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Receptor de Glutamato Metabotrópico 5/deficiência , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Proteína Reelina , Esquizofrenia/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA