Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cardiovasc Res ; 70(2): 264-73, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16581044

RESUMO

Postconditioning has recently been described as a powerful cardioprotection that prevents lethal reperfusion injury. Growing evidence suggests that mitochondrial permeability transition may be a key event in postconditioning. This proposition arises from the complementary observations that: (1) conditions for the mitochondrial permeability transition pore (mPTP) opening are built up during early reperfusion, (2) mPTP opens at the time of reperfusion, (3) transgenic structural alteration of mPTP modifies its opening probability following ischemia-reperfusion, (4) mPTP plays a role in preconditioning, and (5) postconditioning attenuates lethal reperfusion injury. We review in this article current evidence for an important role of the mitochondrial transition pore in postconditioning.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica , Animais , Humanos , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo
2.
Cardiovasc Res ; 69(1): 178-85, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16216231

RESUMO

OBJECTIVE: We investigated whether phosphatidylinositol 3-kinase (PI3K) might regulate mitochondrial permeability transition pore (mPTP) opening in hearts reperfused with either low pressure or postconditioning. METHODS: Male Wistar rat hearts (n=72) were perfused according to the Langendorff technique, exposed to 30 min of ischemia, and assigned to one of the following groups: (1) reperfusion with normal pressure (NP; 100 cm H2O), (2) reperfusion with low pressure (LP; 70 cm H2O), or reperfusion with postconditioning, i.e. 3 episodes of 30 s reperfusion followed by 30 s of ischemia (PostC). Hearts received either the PI3K inhibitors wortmannin or LY294002, or vehicle at the onset of the 60 min reperfusion. Postischemic functional recovery was assessed by rate-pressure product (RPP), and irreversible injury by lactate dehydrogenase (LDH), creatine kinase (CK) and troponin I (TnI) release. Mitochondria were isolated from the reperfused myocardium, and Ca2+-induced mPTP opening was measured using a potentiometric method. RESULTS: Functional recovery was significantly improved in LP and PostC hearts with RPP averaging 13,880+/-810 (LP) and 17,130+/-900 mm Hgxbeats/min (PostC) versus 6450+/-500 mm Hgxbeats/min in NP hearts (p<0.01). LDH release averaged 230+/-30 and 145+/-15 IU/h/g of myocardial tissue in LP and PostC versus 340+/-10 IU/h/g in NP (p<0.05). Wortmannin and LY294002 prevented both RPP improvement and decrease in LDH, CK, and TnI release in LP and PostC groups. The Ca2+ load required to induce mPTP opening averaged 58+/-3 and 52+/-1 nmol/mg mitochondrial proteins in LP and PostC groups, respectively, versus 35+/-4 nmol/mg in the NP group (p<0.01). Wortmannin and LY294002 prevented the beneficial effect in both the LP and PostC groups. CONCLUSION: These results suggest that PI3K regulates the opening of the mitochondrial permeability transition pore in rat hearts reperfused with low pressure or postconditioning.


Assuntos
Canais Iônicos/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Animais , Western Blotting/métodos , Cálcio/metabolismo , Cálcio/farmacologia , Doença das Coronárias/metabolismo , Precondicionamento Isquêmico Miocárdico , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Necrose , Distribuição Aleatória , Ratos , Ratos Wistar , Função Ventricular Esquerda
3.
Circulation ; 111(2): 194-7, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15642769

RESUMO

BACKGROUND: Brief periods of ischemia performed just at the time of reperfusion can reduce infarct size, a phenomenon called "postconditioning." After reflow, opening of the mitochondrial permeability transition pore (mPTP) has been involved in lethal reperfusion injury. We hypothesized that postconditioning may modulate mPTP opening. METHODS AND RESULTS: Anesthetized open-chest rabbits underwent 30 minutes of ischemia and 4 hours of reperfusion. Control hearts underwent no additional intervention. Postconditioning consisted of 4 episodes of 1 minute of coronary occlusion and 1 minute of reperfusion performed after 1 minute of reflow after the prolonged ischemia. Preconditioning consisted of 5 minutes of ischemia and 5 minutes of reperfusion before the 30-minute ischemia. An additional group of rabbits received 5 mg/kg IV of NIM811, a specific inhibitor of the mPTP, 1 minute before reperfusion. Infarct size was assessed by triphenyltetrazolium staining. Mitochondria were isolated from the risk region myocardium, and Ca2+-induced mPTP opening was assessed by use of a potentiometric method. Postconditioning, preconditioning, and NIM811 significantly limited infarct size, which averaged 29+/-4%, 18+/-4%, and 20+/-4% of the risk region, respectively, versus 61+/-6% in controls (P< or =0.001 versus control). The Ca2+ load required to open the mPTP averaged 41+/-4, 47+/-5, and 67+/-9 micromol/L CaCl2 per mg of mitochondrial proteins in postconditioning, preconditioning, and NIM811, respectively, significantly higher than the value of 16+/-4 micromol/L per mg in controls (P< or =0.05). CONCLUSIONS: Postconditioning inhibits opening of the mPTP and provides a powerful antiischemic protection.


Assuntos
Cálcio/metabolismo , Doença das Coronárias/fisiopatologia , Ciclosporina/uso terapêutico , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Mitocôndrias Cardíacas/fisiologia , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Potenciais da Membrana , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Necrose , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt , Coelhos , Distribuição Aleatória , Fatores de Tempo
4.
Biochim Biophys Acta ; 1609(2): 153-60, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12543376

RESUMO

Formation of palmitic acid/Ca(2+) (PA/Ca(2+)) complexes was suggested to play a key role in the non-classical permeability transition in mitochondria (NCPT), which seems to be involved in the PA-induced apoptosis of cardiomyocytes. Our previous studies of complexation of free fatty acids (FFA) with Ca(2+) showed that long-chain (C:16-C:22) saturated FFA had an affinity to Ca(2+), which was much higher than that of other FFA and lipids. The formation of FFA/Ca(2+) complexes in the black-lipid membrane (BLM) was demonstrated to induce a nonspecific ion permeability of the membrane. In the present work, we have found that binding of Ca(2+) to PA incorporated into the membrane of sulforhodamine B (SRB)-loaded liposomes results in an instant release of a part of SRB, with the quantity of SRB released depending on the concentration of PA and Ca(2+). The pH-optimum of this phenomenon, similar to that of PA/Ca(2+) complexation, is in the alkaline range. The same picture of SRB release has been revealed for stearic, but not for linoleic acid. Along with Ca(2+), some other bivalent cations (Ba(2+), Sr(2+), Mn(2+), Ni(2+), Co(2+)) also induce SRB release upon binding to PA-containing liposomes, while Mg(2+) turns out to be relatively ineffective. As revealed by fluorescence correlation spectroscopy, the apparent size of liposomes does not alter after the addition of PA, Ca(2+) or their combination. So it has been supposed that the cause of SRB release from liposomes is the formation of lipid pores. The effect of FFA/Ca(2+)-induced permeabilization of liposomal membranes has several analogies with NCPT, suggesting that both these phenomena are of similar nature.


Assuntos
Cálcio/química , Lipossomos/química , Ácido Palmítico/química , Cálcio/farmacologia , Cátions Bivalentes , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Concentração Osmolar , Permeabilidade/efeitos dos fármacos , Rodaminas
5.
Cardiovasc Res ; 61(1): 115-22, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14732208

RESUMO

OBJECTIVE: We investigated whether ischemic preconditioning (PC) may modify mitochondrial permeability transition (MPT) pore opening. METHODS: In protocol 1, New Zealand White rabbits underwent either no intervention (sham group) or 10 min of ischemia followed by 5 min of reperfusion, preceded (PC) or not (C; control) by one episode of 5 min of ischemia and 5 min of reperfusion. Rabbits were pretreated by either saline or the MPT pore inhibitor cyclosporin A (CsA), or its non-immunosuppressive derivative Cs29 (10 mg/kg, IV bolus). Hearts were harvested and mitochondria isolated for further assessment of Ca(2+)-induced MPT using a Ca(2+)-sensitive micro-electrode. In protocol 2, C and PC hearts underwent 30 min of ischemia and 4 h of reperfusion. They were pretreated either by saline, CsA or Cs29, as in protocol 1. Infarct size was assessed by triphenyltetrazolium, and apoptosis by TUNEL staining. RESULTS: In protocol 1, the Ca(2+) overload required to induce MPT pore opening was significantly higher in PC than in C hearts. CsA and Cs29 significantly increased the Ca(2+) overload required for MPT pore opening. In protocol 2, mean infarct size averaged 25% of the risk region in CsA/Cs29 treated hearts versus 15% in PC and 55% in controls (P<0.05 vs. C, P=ns vs. PC). Cardiomyocyte apoptosis was significantly reduced by PC and cyclosporin treatment with a mean apoptotic index of less than 2% in either group versus more than 11% in controls. CONCLUSION: This suggests that delayed opening of MPT pore may play a major role in ischemic PC.


Assuntos
Cálcio/farmacologia , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose , Ciclosporina/farmacologia , Imunossupressores/farmacologia , Marcação In Situ das Extremidades Cortadas , Membranas Intracelulares/metabolismo , Masculino , Microscopia Eletrônica , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Necrose , Permeabilidade/efeitos dos fármacos , Coelhos , Distribuição Aleatória
6.
Shock ; 32(3): 247-52, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19174741

RESUMO

Openers of K+(ATP) channels protect the myocardium from I/R injury. Sulfonylureas are known as potent blockers of K(ATP) channels. We investigated whether 1) mitochondrial permeability transition pore may be involved in the protection afforded by the mitoK+(ATP) opener nicorandil and 2) whether sulfonylureas may prevent this beneficial effect. Anesthetized New Zealand White rabbits underwent 30 min of coronary artery occlusion, followed by 60 (isolated mitochondria) or 240 min (infarct size) of reperfusion. They received an administration of either saline (control) or nicorandil (0.5 mg kg(-1), i.v.) 15 min before ischemia. Each control and nicorandil group was divided in four subgroups pretreated by either saline, glibenclamide (Glib; 1 mg kg(-1)), gliclazide (Glic; 1 mg kg(-1)), or glimepiride (Glim; 5 microg kg(-1)) 10 min before this. Infarct size was assessed by triphenyltetrazolium chloride staining. Mitochondria were isolated from the area at risk for further assessment of the calcium retention capacity. Glibenclamide (35 +/- 8), but neither Glic (61 +/- 9) nor Glim (48 +/- 7), reversed the improvement in calcium retention capacity due to nicorandil (58 +/- 10 vs. 27 +/- 8 nmoles CaCl2 mg(-1) proteins in control). Infarct size reduction by nicorandil (32% +/- 6% vs. 65% +/- 6% of area at risk) was abolished by Glib (55 +/- 5) but not by Glic (37 +/- 3) or Glim (31 +/- 5). These data suggest that 1) the protective effect of nicorandil involves the inhibition of the mitochondrial permeability transition pore and 2) that unlike Glib, second-generation sulfonylureas preserve this cardioprotection.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Infarto do Miocárdio/prevenção & controle , Nicorandil/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Animais , Cálcio/metabolismo , Gliclazida/farmacologia , Glibureto/farmacologia , Hemodinâmica/efeitos dos fármacos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Coelhos
7.
Shock ; 30(5): 552-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18317409

RESUMO

Mitochondrial permeability transition pore (mPTP) opening is a crucial event in cardiomyocyte death after I/R. We questioned whether preconditioning (PC) may inhibit mPTP opening during ischemia and/or during reperfusion and whether this effect would persist as reperfusion evolves. Anesthetized New Zealand white rabbits underwent a test ischemia followed by reperfusion. Ischemia lasted either 10 or 30 min, whereas reperfusion duration varied from 5 to 20, 60 and up to 240 min. For each duration of ischemia and reperfusion, animals were randomized as either control or PC. Preconditioning was induced by 5 min of ischemia followed by 5 min of reperfusion. Mitochondria were isolated from myocardium at risk for assessment of the calcium retention capacity (CRC) (potentiometric technique) used here as an index of sensitivity of the mPTP to Ca2+ loading. In controls, the CRC was moderately reduced after ischemia alone, but reperfusion severely and time-dependently accelerated further CRC reduction. Preconditioning failed to modify mPTP opening during ischemia alone, but significantly improved CRC during reperfusion. This protective effect persisted as reperfusion evolved. These data suggest that (a) reperfusion strikingly increases the susceptibility to Ca2+-induced mPTP opening, and that (b) PC inhibits mPTP opening at reflow and throughout the first hours of reperfusion.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Cálcio/metabolismo , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Coelhos , Distribuição Aleatória
8.
Am J Physiol Heart Circ Physiol ; 294(1): H386-91, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17951363

RESUMO

Ca(2+) is the main trigger for mitochondrial permeability transition pore opening, which plays a key role in cardiomyocyte death after ischemia-reperfusion. We investigated whether a reduced accumulation of mitochondrial Ca(2+) might explain the attenuation of lethal reperfusion injury by postconditioning. Anesthetized New Zealand White rabbits underwent 30 min of ischemia, followed by either 240 (infarct size protocol) or 60 (mitochondria protocol) min of reperfusion. They received either no intervention (control), preconditioning by 5-min ischemia and 5-min reperfusion, postconditioning by four cycles of 1-min reperfusion and 1-min ischemia at the onset of reflow, or pharmacological inhibition of the transition pore opening by N-methyl-4-isoleucine-cyclosporin (NIM811; 5 mg/kg iv) given at reperfusion. Area at risk and infarct size were assessed by blue dye injection and triphenyltetrazolium chloride staining. Mitochondria were isolated from the risk region for measurement of 1) Ca(2+) retention capacity (CRC), and 2) mitochondrial content of total (atomic absorption spectrometry) and ionized (potentiometric technique) calcium concentration. CRC averaged 0.73 +/- 0.16 in control vs. 4.23 +/- 0.17 mug Ca(2+)/mg proteins in shams (P < 0.05). Postconditioning, preconditioning, or NIM811 significantly increased CRC (P < 0.05 vs. control). In the control group, total and free mitochondrial calcium significantly increased to 2.39 +/- 0.43 and 0.61 +/- 0.10, respectively, vs. 1.42 +/- 0.09 and 0.16 +/- 0.01 mug Ca(2+)/mg in sham (P < 0.05). Surprisingly, whereas total and ionized mitochondrial Ca(2+) decreased in preconditioning, it significantly increased in postconditioning and NIM811 groups. These data suggest that retention of calcium within mitochondria may explain the decreased reperfusion injury in postconditioned (but not preconditioned) hearts.


Assuntos
Cálcio/metabolismo , Fármacos Cardiovasculares/farmacologia , Ciclosporina/farmacologia , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Fármacos Cardiovasculares/uso terapêutico , Respiração Celular/efeitos dos fármacos , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/metabolismo , Ciclosporina/uso terapêutico , Modelos Animais de Doenças , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Coelhos , Fatores de Tempo
9.
J Mol Cell Cardiol ; 38(2): 367-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15698843

RESUMO

The aim of the present study was to determine whether specific inhibition of mitochondrial permeability transition (MPT) by NIM811 at the time of reperfusion following acute myocardial infarction may protect the heart. MPT pore opening appears to be a pivotal event in cell death following acute myocardial infarction. Recently, MPT pore opening has been involved in ischemic preconditioning. In protocol 1, NZW rabbits underwent either no intervention (sham) or 10 min of ischemia followed by 5 min of reperfusion, preceded (preconditioned, PC) or not (control, C) by 5 min of ischemia and 5 min of reperfusion. Additional rabbits were treated by cyclosporin A (CsA) or its non-immunosuppressive and more specific derivative (NIM811) (10 mg kg(-1), IV bolus), either 10 min before ischemia or 1 min before reperfusion. Hearts were excised and mitochondria isolated for further assessment of Ca(2+)-induced MPT. In protocol 2, animals were randomly assigned into similar experimental groups and underwent 30 min of ischemia and 4 h of reperfusion. Infarct size was assessed by TTC staining, and apoptosis by TUNEL assay. The Ca2+ overload required to induce MPT pore opening was significantly higher in NIM811, CsA and PC groups than in controls. Both necrotic and apoptotic cardiomyocyte death were significantly reduced by NIM811, CsA and PC. In both protocols, administration of NIM811 at reperfusion provided full protection. These data indicate that specific inhibition of MPT pore opening at reperfusion following acute myocardial infarction provides a powerful antinecrotic and antiapoptotic protection.


Assuntos
Membranas Intracelulares/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Permeabilidade/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cálcio/antagonistas & inibidores , Cálcio/farmacologia , Cardiotônicos/farmacologia , Ciclosporina/farmacologia , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Coelhos
10.
J Mol Cell Cardiol ; 39(6): 893-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16243351

RESUMO

Trimetazidine (TMZ) affects mitochondrial function during ischemia. Mitochondrial permeability transition is a pivotal event in cardiomyocyte death following acute ischemia. The aim of the present study was to determine whether the anti-ischemic agent TMZ might modulate mitochondrial permeability transition pore (mPTP) opening and limit lethal ischemia-reperfusion injury. Anesthetized NZW rabbits underwent 30 min of coronary artery occlusion followed by 4 hours of reperfusion. Prior to this, they underwent either no intervention (control, C), ischemic preconditioning (PC), or an IV injection of 5 mg kg(-1) TMZ 10 min before ischemia (TMZ). Additional rabbits (Sham group) underwent no ischemia/reperfusion throughout the experiment. Infarct size was assessed by triphenyltetrazolium staining, and apoptosis via measurement of caspase 3 activity. Ca(2+)-induced mPTP opening was assessed in mitochondria isolated from ischemic myocardium. TMZ and PC significantly reduced infarct size that averaged 34 +/- 4% and 21 +/- 4% of the risk region respectively, versus 63 +/- 6% in controls (P<0.005). Caspase 3 activity was reduced in both TMZ and PC groups: 37 +/- 11 and 29 +/- 7 respectively, versus 68 +/- 9 nmol min(-1) mg(-1) mitochondrial protein in controls (P=0.01 versus TMZ and PC). In controls, Ca(2+) load required for mPTP opening averaged 11 +/- 4 microM mg(-1) mitochondrial protein versus 116 +/- 6 in shams (P<0.0001). Pre-treatment by TMZ or PC attenuated this, with Ca(2+) loads averaging 45 +/- 4 and 46 +/- 4 microM mg(-1) mitochondrial proteins, respectively (P<0.005 versus C). These data suggest that TMZ inhibits mPTP opening and protects the rabbit heart from prolonged ischemia-reperfusion injury.


Assuntos
Canais Iônicos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Trimetazidina/administração & dosagem , Vasodilatadores/administração & dosagem , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade/efeitos dos fármacos , Coelhos
11.
J Bioenerg Biomembr ; 36(2): 171-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15224966

RESUMO

A possible role of palmitic acid/Ca2+ (PA/Ca2+) complexes in the cyclosporin-insensitive permeability transition in mitochondria has been studied. It has been shown that in the presence of Ca2+, PA induces a swelling of mitochondria, which is not inhibited by cyclosporin A. The swelling is accompanied by a drop in membrane potential, which cannot be explained only by a work of the Ca2+ uniporter. With time, the potential is restored. Evidence has been obtained indicating that the specific content of mitochondrial lipids would favor the PA/Ca2+ -induced permeabilization of the membrane. In experiments with liposomes, the PA/Ca2+ -induced membrane permeabilization was larger for liposomes formed from the mitochondrial lipids, as compared to the azolectin liposomes. Additionally, it has been found that in mitochondria of the TNF (tumor necrosis factor)-sensitive cells (WEHI-164 line), the content of PA is larger than in mitochondria of the TNF-insensitive cells (C6 line), with this difference being mainly provided by PA incorporated in phosphatidylethanolamine and especially, cardiolipin. The PA/Ca2+ -dependent mechanism of permeability transition in mitochondria might be related to some pathologies, e.g. myocardial ischemia. The heaviness of myocardial infarction of ischemic patients has been demonstrated to correlate directly with the content of PA in the human blood serum.


Assuntos
Cálcio/metabolismo , Permeabilidade da Membrana Celular , Fibrossarcoma/metabolismo , Glioma/metabolismo , Membranas Intracelulares/metabolismo , Ácido Palmítico/metabolismo , Animais , Cálcio/química , Linhagem Celular Tumoral , Células Cultivadas , Ciclosporina/farmacologia , Lipossomos/química , Membranas Artificiais , Camundongos , Mitocôndrias Hepáticas , Pressão Osmótica , Ácido Palmítico/química , Ratos , Equilíbrio Hidroeletrolítico
12.
Anesthesiology ; 100(3): 581-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15108972

RESUMO

BACKGROUND: Recent investigations have focused on the pivotal role of the mitochondria in the underlying mechanisms volatile anesthetic-induced myocardial preconditioning. This study aimed at examining the effect of anesthetic preconditioning on mitochondrial permeability transition (MPT) pore opening. METHODS: Anesthetized open chest rabbits were randomized to one of four groups and underwent 10 min of ischemia, except for the sham 1 group (n = 12). Before this, they underwent a treatment period consisting of (1) no intervention (ischemic group; n = 12), (2) 30 min of desflurane inhalation (8.9% end-tidal concentration) followed by a 15-min washout period (desflurane group; n = 12), or (3) ischemic preconditioning (IPC group; n = 12). A second set of experiments was performed to evaluate the effect of a putative mitochondrial adenosine triphosphate-sensitive potassium channel antagonist, 5-hydroxydecanoate (5-HD). The animals underwent the same protocol as previously, plus pretreatment with 5 mg/kg 5-HD. They were randomized to one of five groups: the sham 2 group, receiving no 5-HD (n = 12); the sham 5-HD group (n = 12); the ischemic 5-HD group (n = 12), the desflurane 5-HD group (n = 12), and the IPC 5-HD group (n = 12). At the end of the protocol, the hearts were excised, and mitochondria were isolated. MPT pore opening was assessed by measuring the amount of calcium required to trigger a massive calcium release indicative of MPT pore opening. RESULTS: Desflurane and IPC group mitochondria needed a higher calcium load than ischemic group mitochondria (362 +/- 84, 372 +/- 74, and 268 +/- 110 microM calcium, respectively; P < 0.05) to induce MPT pore opening. The sham 1 and sham 2 groups needed a similar amount of calcium to trigger mitochondrial calcium release (472 +/- 70 and 458 +/- 90 microM calcium, respectively). 5-HD preadministration had no effect on sham animals (458 +/- 90 and 440 +/- 128 microM calcium without and with 5-HD, respectively) and ischemic group animals (268 +/- 110 and 292 +/- 102 microM calcium without and with 5-HD, respectively) but abolished the effects of desflurane on calcium-induced MPT pore opening (362 +/- 84 microM calcium without 5-HD vs. 238 +/- 96 microM calcium with 5-HD; P < 0.05) and IPC (372 +/- 74 microM calcium without 5-HD vs. 270 +/- 104 microM calcium with 5-HD; P < 0.05). CONCLUSION: Like ischemic preconditioning, desflurane improved the resistance of the transition pore to calcium-induced opening. This effect was inhibited by 5-HD, suggesting a link between mitochondrial adenosine triphosphate-sensitive potassium and MPT.


Assuntos
Anestésicos Inalatórios/farmacologia , Cálcio/fisiologia , Precondicionamento Isquêmico Miocárdico , Isoflurano/análogos & derivados , Isoflurano/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Ciclosporina/farmacologia , Ácidos Decanoicos/farmacologia , Desflurano , Hemodinâmica/efeitos dos fármacos , Hidroxiácidos/farmacologia , Técnicas In Vitro , Masculino , Proteínas de Membrana/agonistas , Proteínas de Membrana/efeitos dos fármacos , Microscopia Eletrônica , Mitocôndrias Cardíacas/ultraestrutura , Isquemia Miocárdica/patologia , Isquemia Miocárdica/prevenção & controle , Permeabilidade/efeitos dos fármacos , Canais de Potássio , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA